Data Engineers
8.75K subscribers
336 photos
74 files
331 links
Free Data Engineering Ebooks & Courses
Download Telegram
SQL Interview Ques & ANS ๐Ÿ’ฅ
๐Ÿ”ฅ2๐Ÿ‘1
Tips to become a Data Engineer ๐Ÿ‘‡๐Ÿ‘‡

1. Data Engineering Basics: At its core, it's about efficiently moving and reshaping data from one place/format to another.
2. Be Curious: The field is vast. Dive deep, ask questions, and always be in the mode of learning and experimenting.
3. Master Data: Understand the intricacies of data types, where they originate, and how they're structured.
4. Programming: Grasping a language is crucial. If you're unsure, start with Python โ€“ it's versatile and widely used in the industry.
5. SQL: A timeless tool for querying databases. Mastering SQL will empower you to work with data across various platforms.
6. Command Line: Familiarizing yourself with command line operations can save a lot of time, especially for quick and repetitive tasks.
7. Know Computers: A basic understanding of how computers communicate and process information can guide better data engineering decisions.
8. Personal Projects: Practical experience is invaluable. Start projects, learn from them, and showcase your work on platforms like GitHub.
9. APIs and JSON: Many modern data sources are API-based. Understanding how to extract and manipulate JSON data will be a daily task.
10. Tools Mastery: Get proficient with your primary tools, but stay updated with emerging technologies and platforms.
11. Data Storage Basics: Know the difference and use-cases for Databases, Data Lakes, and Data Warehouses. Understand the distinction between OLTP (online transaction processing) and OLAP (online analytical processing).
12. Cloud Platforms: The cloud is the future. AWS, Azure, and GCP offer free tiers to start experimenting.
13. Business Acumen: A data engineer who understands business metrics and their implications can offer more value.
14. Data Grain: Dive deep into datasets to understand their finest level of detail. It aids in more precise querying and analytics.
15. Data Formats: Recognizing main data formats (like JSON, XML, CSV, SQLite, Database) will help you navigate different datasets with ease.
๐Ÿ‘5โค1
Kavitha's Journey to become a Data Engineer ๐Ÿ‘‡๐Ÿ‘‡

1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐Ÿ‘2
Here's what the average data engineering interview looks like in 2025:

- 1 hour algorithms in Python
Here you will be asked irrelevant questions about dynamic programming, linked lists, and inverting trees

- 1 hour SQL
Here you will be asked niche questions about recursive CTEs that you've used once in your ten year career

- 1 hour data architecture
Here you will be asked about CAP theorem, lambda vs kappa, and a bunch of other things that ChatGPT probably could answer in a heartbeat

- 1 hour behavioral
Here you will be asked about how to play nicely with your coworkers. This is the most relevant interview in my opinion

- 1 hour project deep dive
Here you will be asked to make up a story about something you did or did not do in the past that was a technical marvel

- 4 hour take home assignment
Here you will be asked to build their entire data engineering stack from scratch over a weekend because why hire data engineers when you can submit them to tests?
๐Ÿ‘1
DevOps Tech Stack
โค1๐Ÿ”ฅ1
Data Engineering Tools:

Apache Hadoop ๐Ÿ—‚๏ธ โ€“ Distributed storage and processing for big data

Apache Spark โšก โ€“ Fast, in-memory processing for large datasets

Airflow ๐Ÿฆ‹ โ€“ Orchestrating complex data workflows

Kafka ๐Ÿฆ โ€“ Real-time data streaming and messaging

ETL Tools (e.g., Talend, Fivetran) ๐Ÿ”„ โ€“ Extract, transform, and load data pipelines

dbt ๐Ÿ”ง โ€“ Data transformation and analytics engineering

Snowflake โ„๏ธ โ€“ Cloud-based data warehousing

Google BigQuery ๐Ÿ“Š โ€“ Managed data warehouse for big data analysis

Redshift ๐Ÿ”ด โ€“ Amazonโ€™s scalable data warehouse

MongoDB Atlas ๐ŸŒฟ โ€“ Fully-managed NoSQL database service
โค5
๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ๐—•๐—œ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜๐Ÿ˜

โœ… Beginner-friendly
โœ… Straight from Microsoft
โœ… And yesโ€ฆ a badge for that resume flex

Perfect for beginners, job seekers, & Working Professionals

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4iq8QlM

Enroll for FREE & Get Certified ๐ŸŽ“
๐Ÿ” Mastering Spark: 20 Interview Questions Demystified!

1๏ธโƒฃ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2๏ธโƒฃ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3๏ธโƒฃ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4๏ธโƒฃ RDD Operations: Explore the various RDD operations that power Spark.
5๏ธโƒฃ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6๏ธโƒฃ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7๏ธโƒฃ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8๏ธโƒฃ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9๏ธโƒฃ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
๐Ÿ”Ÿ spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1๏ธโƒฃ1๏ธโƒฃ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1๏ธโƒฃ2๏ธโƒฃ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1๏ธโƒฃ3๏ธโƒฃ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1๏ธโƒฃ4๏ธโƒฃ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1๏ธโƒฃ5๏ธโƒฃ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1๏ธโƒฃ6๏ธโƒฃ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1๏ธโƒฃ7๏ธโƒฃ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1๏ธโƒฃ8๏ธโƒฃ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1๏ธโƒฃ9๏ธโƒฃ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2๏ธโƒฃ0๏ธโƒฃ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐Ÿ‘3
๐——๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—๐—ผ๐—ฏ ๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ? ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ช๐—ถ๐—น๐—น ๐—›๐—ฒ๐—น๐—ฝ ๐—ฌ๐—ผ๐˜‚ ๐—š๐—ฒ๐˜ ๐—ง๐—ต๐—ฒ๐—ฟ๐—ฒ๐Ÿ˜

Dreaming of working at Google but not sure where to even begin?๐Ÿ“

Start with these FREE insider resourcesโ€”from building a resume that stands out to mastering the Google interview process. ๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/441GCKF

Because if someone else can do it, so can you. Why not you? Why not now?โœ…๏ธ
๐Ÿ‘1
20 recently asked ๐—ฃ๐—ฌ๐—ง๐—›๐—ข๐—ก questions for Data Engineers.

1. Design a Python script to process and transform large CSV files from multiple sources daily.
2. Write Python code to identify and handle missing values in a dataset.
3. Implement a Python solution to store large volumes of time-series data efficiently using an appropriate format.
4. Create a Python-based system to process streaming data from IoT devices in real-time.
5. Write a Python ETL script to extract data from a SQL database, transform it, and load it into a NoSQL database.
6. Implement error handling in a Python data pipeline when an unexpected data type is encountered.
7. Write Python code to validate incoming data for consistency and accuracy.
8. Optimize a Python script processing large datasets to reduce runtime.
9. Create a Python function to merge multiple large datasets without memory overflow.
10. Write a Python script to automate the daily backup of data stored in a cloud bucket.
11. Implement parallel processing in Python for handling large-scale data operations.
12. Write a Python program to monitor and log the performance of a data pipeline.
13. Implement a Python solution to remove duplicates from a large dataset efficiently.
14. Write a Python script to connect to an API, fetch data, and store it in a database.
15. Implement a Python function to generate summary statistics for a large dataset.
16. Write a Python script to clean and standardize a dataset with inconsistent formats.
17. Implement a Python-based incremental data load from a source system to a data warehouse.
18. Write Python code to detect and remove outliers from a dataset.
19. Implement a Python pipeline to process and analyze log files in real-time.
20. Write Python code to create and manage partitions in a large dataset for faster querying.
๐Ÿ‘2
Follow WhatsApp channel for data engineers โค๏ธ
๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
โค1
๐—ก๐—ผ ๐——๐—ฒ๐—ด๐—ฟ๐—ฒ๐—ฒ? ๐—ก๐—ผ ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ. ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—๐—ผ๐—ฏ๐Ÿ˜

Dreaming of a career in data but donโ€™t have a degree? You donโ€™t need one. What you do need are the right skills๐Ÿ”—

These 4 free/affordable certifications can get you there. ๐Ÿ’ปโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ioaJ2p

Letโ€™s get you certified and hired!โœ…๏ธ
Roadmap to crack product-based companies for Big Data Engineer role:

1. Master Python, Scala/Java
2. Ace Apache Spark, Hadoop ecosystem
3. Learn data storage (SQL, NoSQL), warehousing
4. Expertise in data streaming (Kafka, Flink/Storm)
5. Master workflow management (Airflow)
6. Cloud skills (AWS, Azure or GCP)
7. Data modeling, ETL/ELT processes
8. Data viz tools (Tableau, Power BI)
9. Problem-solving, communication, attention to detail
10. Projects, certifications (AWS, Azure, GCP)
11. Practice coding, system design interviews

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜โ€™๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—™๐—ถ๐—ป๐—ฎ๐—น๐—น๐˜† ๐—–๐—น๐—ถ๐—ฐ๐—ธ.๐Ÿ˜

SQL seems tough, right? ๐Ÿ˜ฉ

These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GtntaC

Master it with ease. ๐Ÿ’ก
๐Ÿ‘1