Data Engineers
8.79K subscribers
342 photos
74 files
333 links
Free Data Engineering Ebooks & Courses
Download Telegram
๐—œ๐—ป๐—ณ๐—ผ๐˜€๐˜†๐˜€ ๐Ÿญ๐Ÿฌ๐Ÿฌ% ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€๐Ÿ˜

Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resumeโ€”at no cost.

Whether youโ€™re a student, graduate, or working professional, this platform has something valuable for everyone.

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified ๐ŸŽ“
Complete topics & subtopics of #SQL for Data Engineer role:-

๐Ÿญ. ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—ฆ๐—ค๐—Ÿ ๐—ฆ๐˜†๐—ป๐˜๐—ฎ๐˜…:
SQL keywords
Data types
Operators
SQL statements (SELECT, INSERT, UPDATE, DELETE)

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ (๐——๐——๐—Ÿ):
CREATE TABLE
ALTER TABLE
DROP TABLE
Truncate table

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ถ๐—ฝ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ (๐——๐— ๐—Ÿ):
SELECT statement (SELECT, FROM, WHERE, ORDER BY, GROUP BY, HAVING, JOINs)
INSERT statement
UPDATE statement
DELETE statement

๐Ÿฐ. ๐—”๐—ด๐—ด๐—ฟ๐—ฒ๐—ด๐—ฎ๐˜๐—ฒ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
SUM, AVG, COUNT, MIN, MAX
GROUP BY clause
HAVING clause

๐Ÿฑ. ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ผ๐—ป๐˜€๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐˜๐˜€:
Primary Key
Foreign Key
Unique
NOT NULL
CHECK

๐Ÿฒ. ๐—๐—ผ๐—ถ๐—ป๐˜€:
INNER JOIN
LEFT JOIN
RIGHT JOIN
FULL OUTER JOIN
Self Join
Cross Join

๐Ÿณ. ๐—ฆ๐˜‚๐—ฏ๐—พ๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€:
Types of subqueries (scalar, column, row, table)
Nested subqueries
Correlated subqueries

๐Ÿด. ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
String functions (CONCAT, LENGTH, SUBSTRING, REPLACE, UPPER, LOWER)
Date and time functions (DATE, TIME, TIMESTAMP, DATEPART, DATEADD)
Numeric functions (ROUND, CEILING, FLOOR, ABS, MOD)
Conditional functions (CASE, COALESCE, NULLIF)

๐Ÿต. ๐—ฉ๐—ถ๐—ฒ๐˜„๐˜€:
Creating views
Modifying views
Dropping views

๐Ÿญ๐Ÿฌ. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ฒ๐˜€:
Creating indexes
Using indexes for query optimization

๐Ÿญ๐Ÿญ. ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
ACID properties
Transaction management (BEGIN, COMMIT, ROLLBACK, SAVEPOINT)
Transaction isolation levels

๐Ÿญ๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ถ๐˜๐˜† ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:
Data integrity constraints (referential integrity, entity integrity)
GRANT and REVOKE statements (granting and revoking permissions)
Database security best practices

๐Ÿญ๐Ÿฏ. ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฒ๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐—ฑ๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
Creating stored procedures
Executing stored procedures
Creating functions
Using functions in queries

๐Ÿญ๐Ÿฐ. ๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
Query optimization techniques (using indexes, optimizing joins, reducing subqueries)
Performance tuning best practices

๐Ÿญ๐Ÿฑ. ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:
Recursive queries
Pivot and unpivot operations
Window functions (Row_number, rank, dense_rank, lead & lag)
CTEs (Common Table Expressions)
Dynamic SQL

Here you can find quick SQL Revision Notes๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

Like for more

Hope it helps :)
๐Ÿ‘1
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—™๐—ฟ๐—ผ๐—บ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜, ๐—”๐—ช๐—ฆ, ๐—œ๐—•๐— , ๐—–๐—ถ๐˜€๐—ฐ๐—ผ, ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ. ๐Ÿ˜

- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3E2wYNr

Enroll For FREE & Get Certified ๐ŸŽ“
FREE RESOURCES TO LEARN DATA ENGINEERING
๐Ÿ‘‡๐Ÿ‘‡

Big Data and Hadoop Essentials free course

https://bit.ly/3rLxbul

Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]

https://bit.ly/3fGRjLu

Understanding Data Engineering from Datacamp

https://clnk.in/soLY

Data Engineering Free Books

https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf

https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf

Big Data of Data Engineering Free book

https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf

https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf

The Data Engineerโ€™s Guide to Apache Spark

https://t.me/datasciencefun/783?single

Data Engineering with Python

https://t.me/pythondevelopersindia/343

Data Engineering Projects -

1.End-To-End From Web Scraping to Tableau  https://lnkd.in/ePMw63ge

2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J

3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq

4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3

5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR

6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD

7. YouTube Data Analysis 
   (End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF

8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY

9. Sentiment analysis Twitter:
    Kafka and Spark Structured Streaming -  https://lnkd.in/esVAaqtU

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
Forwarded from Generative AI
๐Ÿฏ ๐—™๐—ฅ๐—˜๐—˜ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Taught by industry leaders (like Microsoft - 100% online and beginner-friendly

* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis 

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3R7asWB

Enroll Now & Get Certified ๐ŸŽ“
Planning for Data Engineering Interview.

Focus on SQL & Python first. Here are some important questions which you should know.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐’๐๐‹ ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.


๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—ฏ๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ?

Here is a complete week-by-week roadmap that can help

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿญ: Learn programming - Python for data manipulation, and Java for big data frameworks.

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿฎ-๐Ÿฏ: Understand database concepts and databases like MongoDB.

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿฐ-๐Ÿฒ: Start with data warehousing (ETL), Big Data (Hadoop) and Data pipelines (Apache AirFlow)

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿฒ-๐Ÿด: Go for advanced topics like cloud computing and containerization (Docker).

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿต-๐Ÿญ๐Ÿฌ: Participate in Kaggle competitions, build projects and develop communication skills.

๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿญ๐Ÿญ: Create your resume, optimize your profiles on job portals, seek referrals and apply.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2๐Ÿ‘1
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—•๐—ฒ๐˜€๐˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—๐—ฎ๐˜ƒ๐—ฎ ๐—˜๐—ฎ๐˜€๐—ถ๐—น๐˜† ๐Ÿ˜

Level up your Java skills without getting overwhelmed

All of them are absolutely free, designed by experienced educators and top tech creators

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3RvvP49

Enroll For FREE & Get Certified ๐ŸŽ“
Complete Data Engineering Roadmap to keep yourself in the hunt in job market.

1. I will Learn SQL
--variables, data types, Aggregate functions
-- Various joins, data analysis
-- data wrangling, operators like(union, intersect etc.)
--Advanced SQL(Regex, Having, PIVOT)
--Windowing functions, CTE
--finally performance optimizations.

2. I will learn Python...
-- Basic functions, constructors, Lists, Tuples, Dictionaries
-- Loops (IF, When, FOR), functional programming
-- Libraries like(Pandas, Numpy, scikit-learn etc)

3. Learn distributed computing...
--Hadoop versions/hadoop architecture
--fault tolerance in hadoop
--Read/understand about Mapreduce processing.
--learn optimizations used in mapreduce etc.

4. Learn data ingestion tools...
--Learn Sqoop/ Kafka/NIFi
--Understand their functionality and job running mechanism.

5. i ll Learn data processing/NOSQL....
--Spark architecture/ RDD/Dataframes/datasets.
--lazy evaluation, DAGs/ Lineage graph/optimization techniques
--YARN utilization/ spark streaming etc.

6. Learn data warehousing.....
--Understand how HIve store and process the data
--different File formats/ compression Techniques.
--partitioning/ Bucketing.
--different UDF's available in Hive.
--SCD concepts.
--Ex Hbase. cassandra

7. Learn job Orchestration...
--Learn Airflow/Oozie
--learn about workflow/ CRON etc.

8. Learn Cloud Computing....
--Learn Azure/AWS/ GCP.
--understand the significance of Cloud in #dataengineering
--Learn Azure synapse/Redshift/Big query
--Learn Ingestion tools/pipeline tools like ADF etc.

9. Learn basics of CI/ CD and Linux commands....
--Read about Kubernetes/Docker. And how crucial they are in data.
--Learn about basic commands like copy data/export in Linux.

Data Engineering Interview Preparation Resources: ๐Ÿ‘‡ https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘3
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น ๐—จ๐—ฝ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to build your tech career without breaking the bank?๐Ÿ’ฐ

These 3 completely free courses are all you need to begin your journey in programming and data analysis๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3EtHnBI

Learn at your own pace, sharpen your skills, and showcase your progress on LinkedIn or your resume. Letโ€™s dive in!โœ…๏ธ
๐Ÿ‘1
10 Data Engineering Projects to build your portfolio.

1. Olympic Data Analytics using Azure
https://lnkd.in/gHNyz_Bg

2. Uber Data Analytics using GCP.
https://lnkd.in/gqE-Y4HS

3. Stock Market Real-time Data Analysis using Kafka
https://lnkd.in/gknh7ZEr

4. Twitter Data Pipeline using Airflow
https://lnkd.in/g7YPnH7G

5. Smart City End to End project using AWS
https://lnkd.in/gh2eWF66

6. Realtime Data Streaming using spark and Kafka
https://lnkd.in/gjH2efgz

7. Zillow Data Analytics - Python, ETL
https://lnkd.in/gvEVZHPR

8. End to end Azure Project
https://lnkd.in/gCVZtNB5

9. End to end project using snowlake
https://lnkd.in/g96n6NbA

10. Data pipeline using Data Fusion
https://lnkd.in/gR5pkeRw

Data Engineering Interview Preparation Resources: ๐Ÿ‘‡ https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

Hope this helps you ๐Ÿ˜Š

If you've read so far, do LIKE the post๐Ÿ‘
๐Ÿ‘3
Forwarded from Artificial Intelligence
๐—”๐—œ & ๐— ๐—Ÿ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Qualcommโ€”a global tech giant offering completely FREE courses that you can access anytime, anywhere.

โœ… 100% Free โ€” No hidden charges, subscriptions, or trials
โœ… Created by Industry Experts
โœ… Self-paced & Online โ€” Learn from anywhere, anytime

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/3YrFTyK

Enroll Now & Get Certified ๐ŸŽ“
๐Ÿ‘2
Planning for Data Science or Data Engineering Interview.

Focus on SQL & Python first. Here are some important questions which you should know.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐’๐๐‹ ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.

Python Interview Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Join for more: https://t.me/datasciencefun

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
Forwarded from Generative AI
๐—๐—ฃ ๐— ๐—ผ๐—ฟ๐—ด๐—ฎ๐—ป ๐—™๐—ฅ๐—˜๐—˜ ๐—ฉ๐—ถ๐—ฟ๐˜๐˜‚๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐˜€๐Ÿ˜

JPMorgan offers free virtual internships to help you develop industry-specific tech, finance, and research skills. 

- Software Engineering Internship
- Investment Banking Program
- Quantitative Research Internship
 
๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/4gHGofl

Enroll For FREE & Get Certified ๐ŸŽ“
10 Data Engineering architectures asked in Interviews.

1. Hadoop
2. Hive
3. Hbase
4. Kafka
5. Spark
6. Airflow
7. Bigquery
8. Snowflake
9. Databricks
10. MongoDB

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

All the best ๐Ÿ‘๐Ÿ‘
๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€ ๐—›๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜๐˜€ ๐Ÿ˜

Mercedes :- https://pdlink.in/3RPLXNM

TechM :- https://pdlink.in/4cws0oN

SE :- https://pdlink.in/42feu5D

Siemens :- https://pdlink.in/4jxhzDR

Dxc :- https://pdlink.in/4ctIeis

EY:- https://pdlink.in/4lwMQZo

Apply before the link expires ๐Ÿ’ซ
Complete topics & subtopics of #SQL for Data Engineer role:-

๐Ÿญ. ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐—ฆ๐—ค๐—Ÿ ๐—ฆ๐˜†๐—ป๐˜๐—ฎ๐˜…:
SQL keywords
Data types
Operators
SQL statements (SELECT, INSERT, UPDATE, DELETE)

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ (๐——๐——๐—Ÿ):
CREATE TABLE
ALTER TABLE
DROP TABLE
Truncate table

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ถ๐—ฝ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ (๐——๐— ๐—Ÿ):
SELECT statement (SELECT, FROM, WHERE, ORDER BY, GROUP BY, HAVING, JOINs)
INSERT statement
UPDATE statement
DELETE statement

๐Ÿฐ. ๐—”๐—ด๐—ด๐—ฟ๐—ฒ๐—ด๐—ฎ๐˜๐—ฒ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
SUM, AVG, COUNT, MIN, MAX
GROUP BY clause
HAVING clause

๐Ÿฑ. ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ผ๐—ป๐˜€๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐˜๐˜€:
Primary Key
Foreign Key
Unique
NOT NULL
CHECK

๐Ÿฒ. ๐—๐—ผ๐—ถ๐—ป๐˜€:
INNER JOIN
LEFT JOIN
RIGHT JOIN
FULL OUTER JOIN
Self Join
Cross Join

๐Ÿณ. ๐—ฆ๐˜‚๐—ฏ๐—พ๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€:
Types of subqueries (scalar, column, row, table)
Nested subqueries
Correlated subqueries

๐Ÿด. ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
String functions (CONCAT, LENGTH, SUBSTRING, REPLACE, UPPER, LOWER)
Date and time functions (DATE, TIME, TIMESTAMP, DATEPART, DATEADD)
Numeric functions (ROUND, CEILING, FLOOR, ABS, MOD)
Conditional functions (CASE, COALESCE, NULLIF)

๐Ÿต. ๐—ฉ๐—ถ๐—ฒ๐˜„๐˜€:
Creating views
Modifying views
Dropping views

๐Ÿญ๐Ÿฌ. ๐—œ๐—ป๐—ฑ๐—ฒ๐˜…๐—ฒ๐˜€:
Creating indexes
Using indexes for query optimization

๐Ÿญ๐Ÿญ. ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
ACID properties
Transaction management (BEGIN, COMMIT, ROLLBACK, SAVEPOINT)
Transaction isolation levels

๐Ÿญ๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—œ๐—ป๐˜๐—ฒ๐—ด๐—ฟ๐—ถ๐˜๐˜† ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:
Data integrity constraints (referential integrity, entity integrity)
GRANT and REVOKE statements (granting and revoking permissions)
Database security best practices

๐Ÿญ๐Ÿฏ. ๐—ฆ๐˜๐—ผ๐—ฟ๐—ฒ๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐—ฑ๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€:
Creating stored procedures
Executing stored procedures
Creating functions
Using functions in queries

๐Ÿญ๐Ÿฐ. ๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป:
Query optimization techniques (using indexes, optimizing joins, reducing subqueries)
Performance tuning best practices

๐Ÿญ๐Ÿฑ. ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฑ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:
Recursive queries
Pivot and unpivot operations
Window functions (Row_number, rank, dense_rank, lead & lag)
CTEs (Common Table Expressions)
Dynamic SQL

Here you can find quick SQL Revision Notes๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

Like for more

Hope it helps :)
๐Ÿ‘2โค1
20 ๐ซ๐ž๐š๐ฅ-๐ญ๐ข๐ฆ๐ž ๐ฌ๐œ๐ž๐ง๐š๐ซ๐ข๐จ-๐›๐š๐ฌ๐ž๐ ๐ข๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

Here are few Interview questions that are often asked in PySpark interviews to evaluate if candidates have hands-on experience or not !!

๐‹๐ž๐ญ๐ฌ ๐๐ข๐ฏ๐ข๐๐ž ๐ญ๐ก๐ž ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง 4 ๐ฉ๐š๐ซ๐ญ๐ฌ

1. Data Processing and Transformation
2. Performance Tuning and Optimization
3. Data Pipeline Development
4. Debugging and Error Handling

๐ƒ๐š๐ญ๐š ๐๐ซ๐จ๐œ๐ž๐ฌ๐ฌ๐ข๐ง๐  ๐š๐ง๐ ๐“๐ซ๐š๐ง๐ฌ๐Ÿ๐จ๐ซ๐ฆ๐š๐ญ๐ข๐จ๐ง:

1. Explain how you would handle large datasets in PySpark. How do you optimize a PySpark job for performance?
2. How would you join two large datasets (say 100GB each) in PySpark efficiently?
3. Given a dataset with millions of records, how would you identify and remove duplicate rows using PySpark?
4. You are given a DataFrame with nested JSON. How would you flatten the JSON structure in PySpark?
5. How do you handle missing or null values in a DataFrame? What strategies would you use in different scenarios?

๐๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐š๐ง๐œ๐ž ๐“๐ฎ๐ง๐ข๐ง๐  ๐š๐ง๐ ๐Ž๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง:

6. How do you debug and optimize PySpark jobs that are taking too long to complete?
7. Explain what a shuffle operation is in PySpark and how you can minimize its impact on performance.
8. Describe a situation where you had to handle data skew in PySpark. What steps did you take?
9. How do you handle and optimize PySpark jobs in a YARN cluster environment?
10. Explain the difference between repartition() and coalesce() in PySpark. When would you use each?

๐ƒ๐š๐ญ๐š ๐๐ข๐ฉ๐ž๐ฅ๐ข๐ง๐ž ๐ƒ๐ž๐ฏ๐ž๐ฅ๐จ๐ฉ๐ฆ๐ž๐ง๐ญ:

11. Describe how you would implement an ETL pipeline in PySpark for processing streaming data.
12. How do you ensure data consistency and fault tolerance in a PySpark job?
13. You need to aggregate data from multiple sources and save it as a partitioned Parquet file. How would you do this in PySpark?
14. How would you orchestrate and manage a complex PySpark job with multiple stages?
15. Explain how you would handle schema evolution in PySpark while reading and writing data.

๐ƒ๐ž๐›๐ฎ๐ ๐ ๐ข๐ง๐  ๐š๐ง๐ ๐„๐ซ๐ซ๐จ๐ซ ๐‡๐š๐ง๐๐ฅ๐ข๐ง๐ :

16. Have you encountered out-of-memory errors in PySpark? How did you resolve them?
17. What steps would you take if a PySpark job fails midway through execution? How do you recover from it?
18. You encounter a Spark task that fails repeatedly due to data corruption in one of the partitions. How would you handle this?
19. Explain a situation where you used custom UDFs (User Defined Functions) in PySpark. What challenges did you face, and how did you overcome them?
20. Have you had to debug a PySpark (Python + Apache Spark) job that was producing incorrect results?

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
Want to build your first AI agent?

Join a live hands-on session by GeeksforGeeks & Salesforce for working professionals

- Build with Agent Builder

- Assign real actions

- Get a free certificate of participation

Registeration link:๐Ÿ‘‡
https://gfgcdn.com/tu/V4t/