Data Engineers
8.79K subscribers
343 photos
74 files
334 links
Free Data Engineering Ebooks & Courses
Download Telegram
- PySpark + DataFrame API = Data Manipulation
- PySpark + RDD = Distributed Datasets
- PySpark + filter() = Data Filtering
- PySpark + join() = Data Integration
- PySpark + groupBy() = Data Aggregation
- PySpark + orderBy() = Data Sorting
- PySpark + union() = Combining Datasets
- PySpark + withColumn() = Data Transformation
- PySpark + select() = Column Selection
- PySpark + SQL Queries = SQL Integration
- PySpark + createOrReplaceTempView() = Virtual Tables
- PySpark + map() = Data Mapping
- PySpark + reduceByKey() = Data Reduction
- PySpark + partitionBy() = Data Partitioning
- PySpark + broadcast() = Data Broadcasting
- PySpark + accumulators = Shared Variables
- PySpark + Spark SQL = Structured Data
- PySpark + DataFrame Caching = Performance Optimization
- PySpark + Window Functions = Advanced Analytics
- PySpark + UDFs = Custom Functions
- PySpark + Machine Learning = Scalable Models
- PySpark + GraphX = Graph Processing
- PySpark + Streaming = Real-Time Processing
- PySpark + DataFrame Joins = Efficient Merging
- PySpark + MLlib = Machine Learning
- PySpark + Structured Streaming = Continuous Processing
- PySpark + Pipeline API = Workflow Automation
- PySpark + Delta Lake = Reliable Lakes
- PySpark + Databricks = Cloud Platform
- PySpark + ETL Pipelines = Data Extraction
- PySpark + Performance Tuning = Query Efficiency
- PySpark + Cluster Management = Distributed Computing

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
๐Ÿš€ SQL Essentials for Data Engineers:

Joins & Subqueries โ€“ Master INNER, LEFT, RIGHT, CROSS joins.

Window Functions โ€“ Use ROW_NUMBER(), RANK(), LAG() for analytics.

CTEs & Temp Tables โ€“ Write cleaner queries with WITH.

Performance Tuning โ€“ Optimize with indexes & execution plans.

ACID Transactions โ€“ Ensure consistency with COMMIT & ROLLBACK.

Normalization โ€“ Balance efficiency with normal vs. denormal forms.

Master these, and you're golden! ๐Ÿ’ก

#SQL #DataEngineering
โค2
Forwarded from Generative AI
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Whether youโ€™re a complete beginner or looking to level up, these courses cover Excel, Power BI, Data Science, and Real-World Analytics Projects to make you job-ready.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3DPkrga

All The Best ๐ŸŽŠ
Part 1: Basic Concepts and Architecture

1. What is a stream in Snowflake, and what are the columns present in a stream?
2. What is the architecture of Snowflake?
3. What is a Snowpipe in the context of Snowflake?
4. Can you explain the concept of a warehouse in Snowflake?
5. What is the data flow, and how many layers are in our projects?
6. How do you convert JSON to the Snowflake VARIANT data type?
7. How are task dependencies managed in Snowflake?
8. Is there a specific table for maintaining notification history in Snowflake?
9. What are alternative methods for loading data into Snowflake without using JSON functions?
10. How can you set up error notifications in Snowflake?

Part 2: Data Management and ETL Processes

1. Could you explain the process of data sharing in Snowflake?
2. Explain the relationship between AWS and SF.
3. How do you move 100 GB of data into SF? Describe the steps you would follow.
4. Differentiate between a View and a Materialized View.
5. Explain the concept of a Merge statement in the context of a relational database.
6. What is the purpose of the pattern function in Snowflake?
7. Have you worked with Snowpipe? If so, describe your experience in creating and using Snowpipe.
8. How can you create a table in Oracle with a time/travel retention period to go back before 12 days?
9. What is the maximum size of a file that can be loaded into an S3 bucket?
10. What are the types of Slowly Changing Dimensions (SCD)?

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฃ๐—น๐—ฎ๐—ป๐˜€ ๐˜๐—ผ ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น ๐—ถ๐—ป ๐—ง๐—ฒ๐—ฐ๐—ต & ๐—”๐—œ!๐Ÿ˜

Looking to boost your tech career?๐Ÿš€

These free learning plans will help you stay ahead in DevOps, AI, Cloud Security, Data Analytics, and Machine Learning!๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ijtDI2

Perfect for Beginners & Professionals Looking to Upskill!โœ…๏ธ
๐Ÿ‘1
Data engineering interviews will be 10x easier if you learn these tools in sequence๐Ÿ‘‡

โžค ๐—ฃ๐—ฟ๐—ฒ-๐—ฟ๐—ฒ๐—พ๐˜‚๐—ถ๐˜€๐—ถ๐˜๐—ฒ๐˜€
- SQL is very important
- Learn Python Funddamentals
- Pandas and Numpy Library in Python.

โžค ๐—ข๐—ป-๐—ฃ๐—ฟ๐—ฒ๐—บ ๐˜๐—ผ๐—ผ๐—น๐˜€
- Learn Pyspark - In Depth (Processing tool)
- Hadoop (Distrubuted Storage)
- Hive (Datawarehouse)
- Hbase (NoSQL Database)
- Airflow (Orchestration)
- Kafka (Streaming platform)
- CICD for production readiness

โžค ๐—–๐—น๐—ผ๐˜‚๐—ฑ (๐—”๐—ป๐˜† ๐—ผ๐—ป๐—ฒ)
- AWS
- Azure
- GCP

โžค Do a couple of projects to get a good feel of it.

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
๐ŸŽ“ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ข๐—ฝ๐—ฒ๐—ป ๐—จ๐—ป๐—ถ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐˜๐˜† โ€“ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป, ๐—š๐—ฟ๐—ผ๐˜„ & ๐—จ๐—ฝ๐˜€๐—ธ๐—ถ๐—น๐—น!๐Ÿ˜

If youโ€™re just starting your learning journey or looking to level up your skillsโ€”this is your golden opportunity! ๐ŸŒŸ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4cuo73X

โณ Donโ€™t miss outโ€”bookmark this for later!
๐Ÿ‘1
Roadmap for becoming an Azure Data Engineer in 2024:

- SQL
- Basic python
- Cloud Fundamental
- ADF
- Databricks/Spark/Pyspark
- Azure Synapse
- Azure Functions, Logic Apps,
- Azure Storage, Key Vault
- Dimensional Modelling
- Azure Fabric
- End-to-End Project
- Resume Preparation
- Interview Prep

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
Top Interview Questions for Apache Airflow ๐Ÿ‘‡๐Ÿ‘‡

1. What is Apache Airflow?
2. Is Apache Airflow an ETL tool?
3. How do we define workflows in Apache Airflow?
4. What are the components of the Apache Airflow architecture?
5. What are Local Executors and their types in Airflow?
6. What is a Celery Executor?
7. How is Kubernetes Executor different from Celery Executor?
8. What are Variables (Variable Class) in Apache Airflow?
9. What is the purpose of Airflow XComs?
10. What are the states a Task can be in? Define an ideal task flow.
11. What is the role of Airflow Operators?
12. How does airflow communicate with a third party (S3, Postgres, MySQL)?
13. What are the basic steps to create a DAG?
14. What is Branching in Directed Acyclic Graphs (DAGs)?
15. What are ways to Control Airflow Workflow?
16. Explain the External task Sensor.
17. What are the ways to monitor Apache Airflow?
18. What is TaskFlow API? and how is it helpful?
19. How are Connections used in Apache Airflow?
20. Explain Dynamic DAGs.
21. What are some of the most useful Airflow CLI commands?
22. How to control the parallelism or concurrency of tasks in Apache Airflow configuration?
23. What do you understand by Jinja Templating?
24. What are Macros in Airflow?
25. What are the limitations of TaskFlow API?
26. How is the Executor involved in the Airflow Life cycle?
27. List the types of Trigger rules.
28. What are SLAs?
29. What is Data Lineage?
30.What is a Spark Submit Operator?
31. What is a Spark JDBC Operator?
32. What is the SparkSQL operator?
33. Difference between Client mode and Cluster mode while deploying to a Spark Job.
34. How would you approach if you wanted to queue up multiple dags with order dependencies?
35. What if your Apache Airflow DAG failed for the last ten days, and now you want to backfill those last ten days' data, but you don't need to run all the tasks of the dag to backfill the data?
36. What will happen if you set 'catchup=False' in the dag and 'latest_only = True' for some of the dag tasks?
37. What if you need to use a set of functions to be used in a directed acyclic graph?
38. How would you handle a task which has no dependencies on any other tasks?
39. How can you use a set or a subset of parameters in some of the dags tasks without explicitly defining them in each task?
40. Is there any way to restrict the number of variables to be used in your directed acyclic graph, and why would we need to do that?

Data Engineering Interview Preparation Resources: ๐Ÿ‘‡ https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค2๐Ÿ‘1
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

- Introduction to SQL (Simplilearn) 

- Intro to SQL (Kaggle) 

- Introduction to Database & SQL Querying 

- SQL for Beginners โ€“ Microsoft SQL Server

 Start Learning Today โ€“ 4 Free SQL Courses

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/42nUsWr

Enroll For FREE & Get Certified ๐ŸŽ“
Git commands for Data Engineers

๐Ÿญ. ๐—ด๐—ถ๐˜ ๐—ฑ๐—ถ๐—ณ๐—ณ: Show file differences not yet staged.
๐Ÿฎ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜ -๐—ฎ -๐—บ "๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜ ๐—บ๐—ฒ๐˜€๐˜€๐—ฎ๐—ด๐—ฒ": Commit all tracked changes with a message.
๐Ÿฏ. ๐—ด๐—ถ๐˜ ๐˜€๐˜๐—ฎ๐˜๐˜‚๐˜€: Show the state of your working directory.
๐Ÿฐ. ๐—ด๐—ถ๐˜ ๐—ฎ๐—ฑ๐—ฑ ๐—ณ๐—ถ๐—น๐—ฒ_๐—ฝ๐—ฎ๐˜๐—ต:Add file(s) to the staging area.
๐Ÿฑ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ๐—ผ๐˜‚๐˜ -๐—ฏ ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต_๐—ป๐—ฎ๐—บ๐—ฒ: Create and switch to a new branch.
๐Ÿฒ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ๐—ผ๐˜‚๐˜ ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต_๐—ป๐—ฎ๐—บ๐—ฒ: Switch to an existing branch.
๐Ÿณ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜ --๐—ฎ๐—บ๐—ฒ๐—ป๐—ฑ:Modify the last commit.
๐Ÿด. ๐—ด๐—ถ๐˜ ๐—ฝ๐˜‚๐˜€๐—ต ๐—ผ๐—ฟ๐—ถ๐—ด๐—ถ๐—ป ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต_๐—ป๐—ฎ๐—บ๐—ฒ: Push a branch to a remote.
๐Ÿต. ๐—ด๐—ถ๐˜ ๐—ฝ๐˜‚๐—น๐—น: Fetch and merge remote changes.
๐Ÿญ๐Ÿฌ. ๐—ด๐—ถ๐˜ ๐—ฟ๐—ฒ๐—ฏ๐—ฎ๐˜€๐—ฒ -๐—ถ: Rebase interactively, rewrite commit history.
๐Ÿญ๐Ÿญ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—น๐—ผ๐—ป๐—ฒ: Create a local copy of a remote repo.
๐Ÿญ๐Ÿฎ. ๐—ด๐—ถ๐˜ ๐—บ๐—ฒ๐—ฟ๐—ด๐—ฒ: Merge branches together.
๐Ÿญ๐Ÿฏ. ๐—ด๐—ถ๐˜ ๐—น๐—ผ๐—ด --๐˜€๐˜๐—ฎ๐˜: Show commit logs with stats.
๐Ÿญ๐Ÿฐ. ๐—ด๐—ถ๐˜ ๐˜€๐˜๐—ฎ๐˜€๐—ต: Stash changes for later.
๐Ÿญ๐Ÿฑ. ๐—ด๐—ถ๐˜ ๐˜€๐˜๐—ฎ๐˜€๐—ต ๐—ฝ๐—ผ๐—ฝ: Apply and remove stashed changes.
๐Ÿญ๐Ÿฒ. ๐—ด๐—ถ๐˜ ๐˜€๐—ต๐—ผ๐˜„ ๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜_๐—ถ๐—ฑ: Show details about a commit.
๐Ÿญ๐Ÿณ. ๐—ด๐—ถ๐˜ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐˜ ๐—›๐—˜๐—”๐——~๐Ÿญ: Undo the last commit, preserving changes locally.
๐Ÿญ๐Ÿด. ๐—ด๐—ถ๐˜ ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜-๐—ฝ๐—ฎ๐˜๐—ฐ๐—ต -๐Ÿญ ๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜_๐—ถ๐—ฑ: Create a patch file for a specific commit.
๐Ÿญ๐Ÿต. ๐—ด๐—ถ๐˜ ๐—ฎ๐—ฝ๐—ฝ๐—น๐˜† ๐—ฝ๐—ฎ๐˜๐—ฐ๐—ต_๐—ณ๐—ถ๐—น๐—ฒ_๐—ป๐—ฎ๐—บ๐—ฒ: Apply changes from a patch file.
๐Ÿฎ๐Ÿฌ. ๐—ด๐—ถ๐˜ ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต -๐—— ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต_๐—ป๐—ฎ๐—บ๐—ฒ: Delete a branch forcefully.
๐Ÿฎ๐Ÿญ. ๐—ด๐—ถ๐˜ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐˜: Undo commits by moving branch reference.
๐Ÿฎ๐Ÿฎ. ๐—ด๐—ถ๐˜ ๐—ฟ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜: Undo commits by creating a new commit.
๐Ÿฎ๐Ÿฏ. ๐—ด๐—ถ๐˜ ๐—ฐ๐—ต๐—ฒ๐—ฟ๐—ฟ๐˜†-๐—ฝ๐—ถ๐—ฐ๐—ธ ๐—ฐ๐—ผ๐—บ๐—บ๐—ถ๐˜_๐—ถ๐—ฑ: Apply changes from a specific commit.
๐Ÿฎ๐Ÿฐ. ๐—ด๐—ถ๐˜ ๐—ฏ๐—ฟ๐—ฎ๐—ป๐—ฐ๐—ต: Lists branches.
๐Ÿฎ๐Ÿฑ. ๐—ด๐—ถ๐˜ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐˜ --๐—ต๐—ฎ๐—ฟ๐—ฑ: Resets everything to a previous commit, erasing all uncommitted changes.

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4
๐—–๐—ถ๐˜€๐—ฐ๐—ผ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐Ÿ˜

Upgrade Your Tech Skills in 2025โ€”For FREE!

๐Ÿ”น Introduction to Cybersecurity
๐Ÿ”น Networking Essentials
๐Ÿ”น Introduction to Modern AI
๐Ÿ”น Discovering Entrepreneurship
๐Ÿ”น Python for Beginners

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:-

https://pdlink.in/4chn8Us

Enroll For FREE & Get Certified ๐ŸŽ“
Free ๐—ฟ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป Apache ๐˜€๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ

๐Ÿญ. ๐—™๐—ถ๐—ฟ๐˜€๐˜ ๐—ถ๐—ป๐˜€๐˜๐—ฎ๐—น๐—น ๐˜€๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ต๐—ฒ๐—ฟ๐—ฒ -
https://lnkd.in/gx_Dc8ph
https://lnkd.in/gg6-8xDz

๐Ÿฎ. ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ ๐˜€๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ต๐—ฒ๐—ฟ๐—ฒ -
https://lnkd.in/ddThYxAS

๐Ÿฏ. ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐˜€๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ณ๐—ฟ๐—ผ๐—บ ๐—ต๐—ฒ๐—ฟ๐—ฒ -
https://lnkd.in/dvZUiJZT

๐Ÿฐ. ๐—”๐—ฝ๐—ฎ๐—ฐ๐—ต๐—ฒ ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—บ๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—ฎ๐—ฑ ๐—ฏ๐—ผ๐—ผ๐—ธ -
https://lnkd.in/d5-KiHHd

๐Ÿฑ. ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐˜†๐—ผ๐˜‚ ๐—บ๐˜‚๐˜€๐˜ ๐—ฑ๐—ผ -
https://lnkd.in/gE8hsyZx
https://lnkd.in/gwWytS-Q
https://lnkd.in/gR7DR6_5

๐Ÿฒ. ๐—™๐—ถ๐—ป๐—ฎ๐—น๐—น๐˜† ๐˜€๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—พ๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ -
https://lnkd.in/dFP5yiHT
https://lnkd.in/dweZX3RA

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
SNOWFLAKES AND DATABRICKS

Snowflake and Databricks
are leading cloud data platforms, but how do you choose the right one for your needs?

๐ŸŒ ๐’๐ง๐จ๐ฐ๐Ÿ๐ฅ๐š๐ค๐ž

โ„๏ธ ๐๐š๐ญ๐ฎ๐ซ๐ž: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.

โ„๏ธ ๐’๐ญ๐ซ๐ž๐ง๐ ๐ญ๐ก๐ฌ: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
โ„๏ธ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.

โ„๏ธ ๐…๐ฅ๐ž๐ฑ๐ข๐›๐ข๐ฅ๐ข๐ญ๐ฒ: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.

โ„๏ธ ๐ƒ๐š๐ญ๐š ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐ : While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.

๐ŸŒ ๐ƒ๐š๐ญ๐š๐›๐ซ๐ข๐œ๐ค๐ฌ

โ„๏ธ ๐‚๐จ๐ซ๐ž: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.

โ„๏ธ ๐’๐ญ๐จ๐ซ๐š๐ ๐ž: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.

๐ŸŒ ๐Š๐ž๐ฒ ๐“๐š๐ค๐ž๐š๐ฐ๐š๐ฒ๐ฌ

โ„๏ธ ๐ƒ๐ข๐ฌ๐ญ๐ข๐ง๐œ๐ญ ๐๐ž๐ž๐๐ฌ: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.

โ„๏ธ ๐’๐ง๐จ๐ฐ๐Ÿ๐ฅ๐š๐ค๐žโ€™๐ฌ ๐ˆ๐๐ž๐š๐ฅ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.

โ„๏ธ ๐ƒ๐š๐ญ๐š๐›๐ซ๐ข๐œ๐ค๐ฌ ๐Ÿ๐จ๐ซ ๐‚๐จ๐ฆ๐ฉ๐ฅ๐ž๐ฑ ๐‹๐š๐ง๐๐ฌ๐œ๐š๐ฉ๐ž๐ฌ: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricksโ€”with its schema-on-read techniqueโ€”may be more advantageous.

๐ŸŒ ๐‚๐จ๐ง๐œ๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:

Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
โค4
Roadmap to crack product-based companies for Big Data Engineer role:

1. Master Python, Scala/Java
2. Ace Apache Spark, Hadoop ecosystem
3. Learn data storage (SQL, NoSQL), warehousing
4. Expertise in data streaming (Kafka, Flink/Storm)
5. Master workflow management (Airflow)
6. Cloud skills (AWS, Azure or GCP)
7. Data modeling, ETL/ELT processes
8. Data viz tools (Tableau, Power BI)
9. Problem-solving, communication, attention to detail
10. Projects, certifications (AWS, Azure, GCP)
11. Practice coding, system design interviews

Here, you can find Data Engineering Resources ๐Ÿ‘‡
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘2
Most asked Python interview questions for Data Engineer jobs with answers!

๐Ÿญ. ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฑ๐—ถ๐—ณ๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐—ฒ๐˜๐˜„๐—ฒ๐—ฒ๐—ป ๐—น๐—ถ๐˜€๐˜๐˜€ ๐—ฎ๐—ป๐—ฑ ๐˜๐˜‚๐—ฝ๐—น๐—ฒ๐˜€ ๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป.
Lists are mutable, meaning their elements can be changed but Tuples are immutable.

๐Ÿฎ. ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ๐—™๐—ฟ๐—ฎ๐—บ๐—ฒ ๐—ถ๐—ป ๐—ฝ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜€?
A DataFrame is a 2-dimensional labelled data structure, similar to a spreadsheet.

๐Ÿฏ. ๐—ฅ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐˜„๐—ผ๐—ฟ๐—ฑ๐˜€ ๐—ถ๐—ป ๐—ฎ ๐˜€๐˜๐—ฟ๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป
def reverse_words(s: str) -> str:
words = s.split()
reversed_words = reversed(words)
return ' '.join(reversed_words)

๐Ÿฐ. ๐—ช๐—ฟ๐—ถ๐˜๐—ฒ ๐—ฎ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ผ ๐—ฐ๐—ผ๐˜‚๐—ป๐˜ ๐˜๐—ต๐—ฒ ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐˜ƒ๐—ผ๐˜„๐—ฒ๐—น๐˜€ ๐—ถ๐—ป ๐—ฎ ๐—ด๐—ถ๐˜ƒ๐—ฒ๐—ป ๐˜€๐˜๐—ฟ๐—ถ๐—ป๐—ด?
def count_vowels(string: str) -> int:
vowels = "aeiouAEIOU"
vowel_count = 0
for char in string:
if char in vowels:
vowel_count += 1
return vowel_count

Iโ€™ve listed 4 but there are many questions youโ€™d need to prepare to succeed in interviews.

Here, you can find Data Engineering Interview Resources ๐Ÿ‘‡ https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
โค1๐Ÿ‘1
Here are top 40 commonly asked pyspark questions that you can prepare for interviews.

๐—ฅ๐——๐——๐˜€ -
1. What is an RDD in Apache Spark? Explain its characteristics.
2. How are RDDs fault-tolerant in Apache Spark?
3. What are the different ways to create RDDs in Spark?
4. Explain the difference between transformations and actions in RDDs.
5. How does Spark handle data partitioning in RDDs?
6. Can you explain the lineage graph in RDDs and its significance?
7. What is lazy evaluation in Apache Spark RDDs?
8. How can you persist RDDs in memory for faster access?
9. Explain the concept of narrow and wide transformations in RDDs.
10. What are the limitations of RDDs compared to DataFrames and Datasets?

๐——๐—ฎ๐˜๐—ฎ๐—ณ๐—ฟ๐—ฎ๐—บ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐——๐—ฎ๐˜๐—ฎ๐˜€๐—ฒ๐˜๐˜€ -
1. What are DataFrames and Datasets in Apache Spark?
2. What are the differences between DataFrame and RDD?
3. Explain the concept of a schema in a DataFrame.
4. How are DataFrames and Datasets fault-tolerant in Spark?
5. What are the advantages of using DataFrames over RDDs?
6. Explain the Catalyst optimizer in Apache Spark.
7. How can you create DataFrames in Apache Spark?
8. What is the significance of Encoders in Datasets?
9. How does Spark SQL optimize the execution plan for DataFrames?
10. Can you explain the benefits of using Datasets over DataFrames?

๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—ฆ๐—ค๐—Ÿ -
1. What is Spark SQL, and how does it relate to Apache Spark?
2. How does Spark SQL leverage DataFrame and Dataset APIs?
3. Explain the role of the Catalyst optimizer in Spark SQL.
4. How can you run SQL queries on DataFrames in Spark SQL?
5. What are the benefits of using Spark SQL over traditional SQL queries?

๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป -
1. What are some common performance bottlenecks in Apache Spark applications?
2. How can you optimize the shuffle operations in Spark?
3. Explain the significance of data skew and techniques to handle it in Spark.
4. What are some techniques to optimize Spark job execution time?
5. How can you tune memory configurations for better performance in Spark?
6. What is dynamic allocation, and how does it optimize resource usage in Spark?
7. How can you optimize joins in Spark?
8. What are the benefits of partitioning data in Spark?
9. How does Spark leverage data locality for optimization?

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
5 most asked SQL Interview Questions for Data Engineer jobs.

๐Ÿญ. ๐—™๐—ถ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—ฆ๐—ฒ๐—ฐ๐—ผ๐—ป๐—ฑ ๐—›๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฆ๐—ฎ๐—น๐—ฎ๐—ฟ๐˜† ๐—ถ๐—ป ๐—ฎ ๐—ง๐—ฎ๐—ฏ๐—น๐—ฒ

SELECT MAX(salary) AS SecondHighestSalary
FROM Employee
WHERE salary < (SELECT MAX(salary) FROM Employee);

๐Ÿฎ . ๐—™๐—ถ๐—ป๐—ฑ ๐—ผ๐˜‚๐˜ ๐—ฒ๐—บ๐—ฝ๐—น๐—ผ๐˜†๐—ฒ๐—ฒ๐˜€ ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—บ๐—ผ๐—ฟ๐—ฒ ๐˜๐—ต๐—ฎ๐—ป ๐˜๐—ต๐—ฒ๐—ถ๐—ฟ ๐—บ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—ฟ๐˜€

SELECT e2.name as Employee
FROM employee e1
INNER JOIN employee e2
ON e1.id = e2.managerID
WHERE e1.salary < e2.salary

๐Ÿฏ. ๐—™๐—ถ๐—ป๐—ฑ ๐—ฐ๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ต๐—ผ ๐—ป๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐—ผ๐—ฟ๐—ฑ๐—ฒ๐—ฟ

SELECT name as Customers
FROM Customers
WHERE id not in (
SELECT customerId
FROM Orders);

๐Ÿฐ. ๐——๐—ฒ๐—น๐—ฒ๐˜๐—ฒ ๐—ฑ๐˜‚๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ ๐—ฒ๐—บ๐—ฎ๐—ถ๐—น๐˜€

DELETE p1
FROM Person p1, Person p2
WHERE p1.Email = p2.Email AND
p1.Id > p2.Id

๐Ÿฑ. ๐—–๐—ผ๐˜‚๐—ป๐˜ ๐˜๐—ต๐—ฒ ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ผ๐—ฟ๐—ฑ๐—ฒ๐—ฟ๐˜€ ๐—ฝ๐—น๐—ฎ๐—ฐ๐—ฒ๐—ฑ ๐—ถ๐—ป ๐˜๐—ต๐—ฒ ๐—ฝ๐—ฟ๐—ฒ๐˜ƒ๐—ถ๐—ผ๐˜‚๐˜€ ๐˜†๐—ฒ๐—ฎ๐—ฟ ๐—ฎ๐—ป๐—ฑ ๐—บ๐—ผ๐—ป๐˜๐—ต.

SELECT COUNT(*) AS order_count
FROM orders WHERE EXTRACT(YEAR_MONTH FROM order_date) = EXTRACT(YEAR_MONTH FROM CURDATE() - INTERVAL 1 MONTH);

๐Ÿ’ก Note: SQL interview questions vary widely based on the specific role and company. So you also need to practice questions your target companies ask.

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ & ๐—˜๐—น๐—ฒ๐˜ƒ๐—ฎ๐˜๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜€๐—ต๐—ฏ๐—ผ๐—ฎ๐—ฟ๐—ฑ ๐—š๐—ฎ๐—บ๐—ฒ!๐Ÿ˜

Want to turn raw data into stunning visual stories?๐Ÿ“Š

Here are 6 FREE Power BI courses thatโ€™ll take you from beginner to proโ€”without spending a single rupee๐Ÿ’ฐ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4cwsGL2

Enjoy Learning โœ…๏ธ
Thinking about becoming a Data Engineer? Here's the roadmap to avoid pitfalls & master the essential skills for a successful career.

๐Ÿ“ŠIntroduction to Data Engineering

โœ…Overview of Data Engineering & its importance
โœ…Key responsibilities & skills of a Data Engineer
โœ…Difference between Data Engineer, Data Scientist & Data Analyst
โœ…Data Engineering tools & technologies

๐Ÿ“ŠProgramming for Data Engineering

โœ…Python
โœ…SQL
โœ…Java/Scala
โœ…Shell scripting

๐Ÿ“ŠDatabase System & Data Modeling

โœ…Relational Databases: design, normalization & indexing
โœ…NoSQL Databases: key-value stores, document stores, column-family stores & graph database
โœ…Data Modeling: conceptual, logical & physical data model
โœ…Database Management Systems & their administration

๐Ÿ“ŠData Warehousing and ETL Processes

โœ…Data Warehousing concepts: OLAP vs. OLTP, star schema & snowflake schema
โœ…ETL: designing, developing & managing ETL processe
โœ…Tools & technologies: Apache Airflow, Talend, Informatica, AWS Glue
โœ…Data lakes & modern data warehousing solution

๐Ÿ“ŠBig Data Technologies

โœ…Hadoop ecosystem: HDFS, MapReduce, YARN
โœ…Apache Spark: core concepts, RDDs, DataFrames & SparkSQL
โœ…Kafka and real-time data processing
โœ…Data storage solutions: HBase, Cassandra, Amazon S3

๐Ÿ“ŠCloud Platforms & Services

โœ…Introduction to cloud platforms: AWS, Google Cloud Platform, Microsoft Azure
โœ…Cloud data services: Amazon Redshift, Google BigQuery, Azure Data Lake
โœ…Data storage & management on the cloud
โœ…Serverless computing & its applications in data engineering

๐Ÿ“ŠData Pipeline Orchestration

โœ…Workflow orchestration: Apache Airflow, Luigi, Prefect
โœ…Building & scheduling data pipelines
โœ…Monitoring & troubleshooting data pipelines
โœ…Ensuring data quality & consistency

๐Ÿ“ŠData Integration & API Development

โœ…Data integration techniques & best practices
โœ…API development: RESTful APIs, GraphQL
โœ…Tools for API development: Flask, FastAPI, Django
โœ…Consuming APIs & data from external sources

๐Ÿ“ŠData Governance & Security

โœ…Data governance frameworks & policies
โœ…Data security best practices
โœ…Compliance with data protection regulations
โœ…Implementing data auditing & lineage

๐Ÿ“ŠPerformance Optimization & Troubleshooting

โœ…Query optimization techniques
โœ…Database tuning & indexing
โœ…Managing & scaling data infrastructure
โœ…Troubleshooting common data engineering issues

๐Ÿ“ŠProject Management & Collaboration

โœ…Agile methodologies & best practices
โœ…Version control systems: Git & GitHub
โœ…Collaboration tools: Jira, Confluence, Slack
โœ…Documentation & reporting

Resources for Data Engineering
1๏ธโƒฃPython: https://t.me/pythonanalyst

2๏ธโƒฃSQL: https://t.me/sqlanalyst

3๏ธโƒฃExcel: https://t.me/excel_analyst

4๏ธโƒฃFree DE Courses: https://t.me/free4unow_backup/569

Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C

All the best ๐Ÿ‘๐Ÿ‘
โค4