๐ช๐ฎ๐ป๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐? ๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ผ๐!๐
Learn AI from scratch with these 6 YouTube channels! ๐ฏ
๐กWhether youโre a beginner or an AI enthusiast, these top AI experts will guide you through AI fundamentals, deep learning, and real-world applications
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iIxCy8
๐ข Start watching today and stay ahead in the AI revolution! ๐
Learn AI from scratch with these 6 YouTube channels! ๐ฏ
๐กWhether youโre a beginner or an AI enthusiast, these top AI experts will guide you through AI fundamentals, deep learning, and real-world applications
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iIxCy8
๐ข Start watching today and stay ahead in the AI revolution! ๐
โค2
Roadmap to Become DevOps Engineer ๐จโ๐ป
๐ Linux Basics
โโ๐ Scripting Skills
โโโ๐ CI/CD Tools
โโโโ๐ Containerization
โโโโโ๐ Cloud Platforms
โโโโโโ๐ Build Projects
โโโโโโโ โ Apply For Job
๐ Linux Basics
โโ๐ Scripting Skills
โโโ๐ CI/CD Tools
โโโโ๐ Containerization
โโโโโ๐ Cloud Platforms
โโโโโโ๐ Build Projects
โโโโโโโ โ Apply For Job
๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ ๐ถ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ โ ๐๐ผ๐ปโ๐ ๐ ๐ถ๐๐ ๐ข๐๐!๐
Want to learn Data Science, AI, Business, and more from Harvard University for FREE?๐ฏ
This is your chance to gain Ivy League knowledge without spending a dime!๐คฉ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FFFhPp
๐ก Whether youโre a student, working professional, or just eager to learnโ
This is your golden opportunity!โ ๏ธ
Want to learn Data Science, AI, Business, and more from Harvard University for FREE?๐ฏ
This is your chance to gain Ivy League knowledge without spending a dime!๐คฉ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FFFhPp
๐ก Whether youโre a student, working professional, or just eager to learnโ
This is your golden opportunity!โ ๏ธ
You will be 18x better at Azure Data Engineering
If you cover these topics:
1. Azure Fundamentals
โข Cloud Computing Basics
โข Azure Global Infrastructure
โข Azure Regions and Availability Zones
โข Resource Groups and Management
2. Azure Storage Solutions
โข Azure Blob Storage
โข Azure Data Lake Storage (ADLS)
โข Azure SQL Database
โข Cosmos DB
3. Data Ingestion and Integration
โข Azure Data Factory
โข Azure Event Hubs
โข Azure Stream Analytics
โข Azure Logic Apps
4. Big Data Processing
โข Azure Databricks
โข Azure HDInsight
โข Azure Synapse Analytics
โข Spark on Azure
5. Serverless Compute
โข Azure Functions
โข Azure Logic Apps
โข Azure App Services
โข Durable Functions
6. Data Warehousing
โข Azure Synapse Analytics (formerly SQL Data Warehouse)
โข Dedicated SQL Pool vs. Serverless SQL Pool
โข Data Marts
โข PolyBase
7. Data Modeling
โข Star Schema
โข Snowflake Schema
โข Slowly Changing Dimensions
โข Data Partitioning Strategies
8. ETL and ELT Pipelines
โข Extract, Transform, Load (ETL) Patterns
โข Extract, Load, Transform (ELT) Patterns
โข Azure Data Factory Pipelines
โข Data Flow Activities
9. Data Security
โข Azure Key Vault
โข Role-Based Access Control (RBAC)
โข Data Encryption (At Rest, In Transit)
โข Managed Identities
10. Monitoring and Logging
โข Azure Monitor
โข Azure Log Analytics
โข Azure Application Insights
โข Metrics and Alerts
11. Scalability and Performance
โข Vertical vs. Horizontal Scaling
โข Load Balancers
โข Autoscaling
โข Caching with Azure Redis Cache
12. Cost Management
โข Azure Cost Management and Billing
โข Reserved Instances and Spot VMs
โข Cost Optimization Strategies
โข Pricing Calculators
13. Networking
โข Virtual Networks (VNets)
โข VPN Gateway
โข ExpressRoute
โข Azure Firewall and NSGs
14. CI/CD in Azure
โข Azure DevOps Pipelines
โข Infrastructure as Code (IaC) with ARM Templates
โข GitHub Actions
โข Terraform on Azure
Here, you can find Data Engineering Resources ๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
All the best ๐๐
If you cover these topics:
1. Azure Fundamentals
โข Cloud Computing Basics
โข Azure Global Infrastructure
โข Azure Regions and Availability Zones
โข Resource Groups and Management
2. Azure Storage Solutions
โข Azure Blob Storage
โข Azure Data Lake Storage (ADLS)
โข Azure SQL Database
โข Cosmos DB
3. Data Ingestion and Integration
โข Azure Data Factory
โข Azure Event Hubs
โข Azure Stream Analytics
โข Azure Logic Apps
4. Big Data Processing
โข Azure Databricks
โข Azure HDInsight
โข Azure Synapse Analytics
โข Spark on Azure
5. Serverless Compute
โข Azure Functions
โข Azure Logic Apps
โข Azure App Services
โข Durable Functions
6. Data Warehousing
โข Azure Synapse Analytics (formerly SQL Data Warehouse)
โข Dedicated SQL Pool vs. Serverless SQL Pool
โข Data Marts
โข PolyBase
7. Data Modeling
โข Star Schema
โข Snowflake Schema
โข Slowly Changing Dimensions
โข Data Partitioning Strategies
8. ETL and ELT Pipelines
โข Extract, Transform, Load (ETL) Patterns
โข Extract, Load, Transform (ELT) Patterns
โข Azure Data Factory Pipelines
โข Data Flow Activities
9. Data Security
โข Azure Key Vault
โข Role-Based Access Control (RBAC)
โข Data Encryption (At Rest, In Transit)
โข Managed Identities
10. Monitoring and Logging
โข Azure Monitor
โข Azure Log Analytics
โข Azure Application Insights
โข Metrics and Alerts
11. Scalability and Performance
โข Vertical vs. Horizontal Scaling
โข Load Balancers
โข Autoscaling
โข Caching with Azure Redis Cache
12. Cost Management
โข Azure Cost Management and Billing
โข Reserved Instances and Spot VMs
โข Cost Optimization Strategies
โข Pricing Calculators
13. Networking
โข Virtual Networks (VNets)
โข VPN Gateway
โข ExpressRoute
โข Azure Firewall and NSGs
14. CI/CD in Azure
โข Azure DevOps Pipelines
โข Infrastructure as Code (IaC) with ARM Templates
โข GitHub Actions
โข Terraform on Azure
Here, you can find Data Engineering Resources ๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
All the best ๐๐
๐4โค1
๐ฒ ๐๐ฅ๐๐ ๐ฌ๐ผ๐๐ง๐๐ฏ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ!๐
Want to break into Data Analytics but donโt know where to start?
These 6 FREE courses cover everythingโfrom Excel, SQL, Python, and Power BI to Business Math & Statistics and Portfolio Projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kMSztw
๐ Save this now and start learning today!
Want to break into Data Analytics but donโt know where to start?
These 6 FREE courses cover everythingโfrom Excel, SQL, Python, and Power BI to Business Math & Statistics and Portfolio Projects! ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kMSztw
๐ Save this now and start learning today!
20 recently asked ๐๐๐๐๐ interview questions.
- How do you create a topic in Kafka using the Confluent CLI?
- Explain the role of the Schema Registry in Kafka.
- How do you register a new schema in the Schema Registry?
- What is the importance of key-value messages in Kafka?
- Describe a scenario where using a random key for messages is beneficial.
- Provide an example where using a constant key for messages is necessary.
- Write a simple Kafka producer code that sends JSON messages to a topic.
- How do you serialize a custom object before sending it to a Kafka topic?
- Describe how you can handle serialization errors in Kafka producers.
- Write a Kafka consumer code that reads messages from a topic and deserializes them from JSON.
- How do you handle deserialization errors in Kafka consumers?
- Explain the process of deserializing messages into custom objects.
- What is a consumer group in Kafka, and why is it important?
- Describe a scenario where multiple consumer groups are used for a single topic.
- How does Kafka ensure load balancing among consumers in a group?
- How do you send JSON data to a Kafka topic and ensure it is properly serialized?
- Describe the process of consuming JSON data from a Kafka topic and converting it to a usable format.
- Explain how you can work with CSV data in Kafka, including serialization and deserialization.
- Write a Kafka producer code snippet that sends CSV data to a topic.
- Write a Kafka consumer code snippet that reads and processes CSV data from a topic.
Here, you can find Data Engineering Resources ๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
All the best ๐๐
- How do you create a topic in Kafka using the Confluent CLI?
- Explain the role of the Schema Registry in Kafka.
- How do you register a new schema in the Schema Registry?
- What is the importance of key-value messages in Kafka?
- Describe a scenario where using a random key for messages is beneficial.
- Provide an example where using a constant key for messages is necessary.
- Write a simple Kafka producer code that sends JSON messages to a topic.
- How do you serialize a custom object before sending it to a Kafka topic?
- Describe how you can handle serialization errors in Kafka producers.
- Write a Kafka consumer code that reads messages from a topic and deserializes them from JSON.
- How do you handle deserialization errors in Kafka consumers?
- Explain the process of deserializing messages into custom objects.
- What is a consumer group in Kafka, and why is it important?
- Describe a scenario where multiple consumer groups are used for a single topic.
- How does Kafka ensure load balancing among consumers in a group?
- How do you send JSON data to a Kafka topic and ensure it is properly serialized?
- Describe the process of consuming JSON data from a Kafka topic and converting it to a usable format.
- Explain how you can work with CSV data in Kafka, including serialization and deserialization.
- Write a Kafka producer code snippet that sends CSV data to a topic.
- Write a Kafka consumer code snippet that reads and processes CSV data from a topic.
Here, you can find Data Engineering Resources ๐
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
All the best ๐๐
๐2
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฆ๐ผ๐ณ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ณ๐ผ๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฆ๐๐ฐ๐ฐ๐ฒ๐๐!๐
Want to stand out in your career?
Soft skills are just as important as technical expertise! ๐
Here are 3 FREE courses to help you communicate, negotiate, and present with confidence
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41V1Yqi
Tag someone who needs this boost! ๐
Want to stand out in your career?
Soft skills are just as important as technical expertise! ๐
Here are 3 FREE courses to help you communicate, negotiate, and present with confidence
๐๐ข๐ง๐ค๐:-
https://pdlink.in/41V1Yqi
Tag someone who needs this boost! ๐
๐1
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฆ๐ค๐ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ถ๐ป ๐๐๐๐ ๐ญ๐ฐ ๐๐ฎ๐๐!๐
Want to become a SQL pro in just 2 weeks?
SQL is a must-have skill for data analysts! ๐ฏ
This step-by-step roadmap will take you from beginner to advanced ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XOlgwf
๐ Follow this roadmap, practice daily, and take your SQL skills to the next level!
Want to become a SQL pro in just 2 weeks?
SQL is a must-have skill for data analysts! ๐ฏ
This step-by-step roadmap will take you from beginner to advanced ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3XOlgwf
๐ Follow this roadmap, practice daily, and take your SQL skills to the next level!
Python for Data Engineering role ๐
โ List Comprehensions and Dict Comprehensions
โณ Optimize iteration with one-liners
โณ Fast filtering and transformations
โณ O(n) time complexity
โ Lambda Functions
โณ Anonymous functions for concise operations
โณ Used in map(), filter(), and sort()
โณ Key for functional programming
โ Functional Programming (map, filter, reduce)
โณ Apply transformations efficiently
โณ Reduce dataset size dynamically
โณ Avoid unnecessary loops
โ Iterators and Generators
โณ Efficient memory handling with yield
โณ Streaming large datasets
โณ Lazy evaluation for performance
โ Error Handling with Try-Except
โณ Graceful failure handling
โณ Preventing crashes in pipelines
โณ Custom exception classes
โ Regex for Data Cleaning
โณ Extract structured data from unstructured text
โณ Pattern matching for text processing
โณ Optimized with re.compile()
โ File Handling (CSV, JSON, Parquet)
โณ Read and write structured data efficiently
โณ pandas.read_csv(), json.load(), pyarrow
โณ Handling large files in chunks
โ Handling Missing Data
โณ .fillna(), .dropna(), .interpolate()
โณ Imputing missing values
โณ Reducing nulls for better analytics
โ Pandas Operations
โณ DataFrame filtering and aggregations
โณ .groupby(), .pivot_table(), .merge()
โณ Handling large structured datasets
โ SQL Queries in Python
โณ Using sqlalchemy and pandas.read_sql()
โณ Writing optimized queries
โณ Connecting to databases
โซ Working with APIs
โณ Fetching data with requests and httpx
โณ Handling rate limits and retries
โณ Parsing JSON/XML responses
โฌ Cloud Data Handling (AWS S3, Google Cloud, Azure)
โณ Upload/download data from cloud storage
โณ boto3, gcsfs, azure-storage
โณ Handling large-scale data ingestion
๐๐ก๐ ๐๐๐ฌ๐ญ ๐ฐ๐๐ฒ ๐ญ๐จ ๐ฅ๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ข๐ฌ ๐ง๐จ๐ญ ๐ฃ๐ฎ๐ฌ๐ญ ๐๐ฒ ๐ฌ๐ญ๐ฎ๐๐ฒ๐ข๐ง๐ , ๐๐ฎ๐ญ ๐๐ฒ ๐ข๐ฆ๐ฉ๐ฅ๐๐ฆ๐๐ง๐ญ๐ข๐ง๐ ๐ข๐ญ
Join for more data engineering resources: https://t.me/sql_engineer
โ List Comprehensions and Dict Comprehensions
โณ Optimize iteration with one-liners
โณ Fast filtering and transformations
โณ O(n) time complexity
โ Lambda Functions
โณ Anonymous functions for concise operations
โณ Used in map(), filter(), and sort()
โณ Key for functional programming
โ Functional Programming (map, filter, reduce)
โณ Apply transformations efficiently
โณ Reduce dataset size dynamically
โณ Avoid unnecessary loops
โ Iterators and Generators
โณ Efficient memory handling with yield
โณ Streaming large datasets
โณ Lazy evaluation for performance
โ Error Handling with Try-Except
โณ Graceful failure handling
โณ Preventing crashes in pipelines
โณ Custom exception classes
โ Regex for Data Cleaning
โณ Extract structured data from unstructured text
โณ Pattern matching for text processing
โณ Optimized with re.compile()
โ File Handling (CSV, JSON, Parquet)
โณ Read and write structured data efficiently
โณ pandas.read_csv(), json.load(), pyarrow
โณ Handling large files in chunks
โ Handling Missing Data
โณ .fillna(), .dropna(), .interpolate()
โณ Imputing missing values
โณ Reducing nulls for better analytics
โ Pandas Operations
โณ DataFrame filtering and aggregations
โณ .groupby(), .pivot_table(), .merge()
โณ Handling large structured datasets
โ SQL Queries in Python
โณ Using sqlalchemy and pandas.read_sql()
โณ Writing optimized queries
โณ Connecting to databases
โซ Working with APIs
โณ Fetching data with requests and httpx
โณ Handling rate limits and retries
โณ Parsing JSON/XML responses
โฌ Cloud Data Handling (AWS S3, Google Cloud, Azure)
โณ Upload/download data from cloud storage
โณ boto3, gcsfs, azure-storage
โณ Handling large-scale data ingestion
๐๐ก๐ ๐๐๐ฌ๐ญ ๐ฐ๐๐ฒ ๐ญ๐จ ๐ฅ๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ข๐ฌ ๐ง๐จ๐ญ ๐ฃ๐ฎ๐ฌ๐ญ ๐๐ฒ ๐ฌ๐ญ๐ฎ๐๐ฒ๐ข๐ง๐ , ๐๐ฎ๐ญ ๐๐ฒ ๐ข๐ฆ๐ฉ๐ฅ๐๐ฆ๐๐ง๐ญ๐ข๐ง๐ ๐ข๐ญ
Join for more data engineering resources: https://t.me/sql_engineer
๐3