🔵 عنوان مقاله
Testing AI features: from 0 to Test Strategy
🟢 خلاصه مقاله:
این مقاله از Thiago Werner با عنوان Testing AI features: from 0 to Test Strategy میکوشد خواننده را برای آزمون ویژگیهای مبتنی بر هوش مصنوعی آماده کند. نویسنده ابتدا مروری کاربردی بر LLMs، MCPs و prompt engineering ارائه میدهد و نشان میدهد چرا ماهیت غیردترمینیستیک مدلها، تعامل با ابزارها و طراحی پرامپت، روش ارزیابی کیفیت را تغییر میدهد. سپس مسیر ساختن یک استراتژی تست را ترسیم میکند: تعیین معیارهای کیفیت، ارزیابی آفلاین با دیتاستهای طلایی و سناریوهای لبه، تستهای امنیتی و خصمانه، و سنجشهایی مانند موفقیت وظیفه، دقت/فکتوالیتی، پایداری، تأخیر و هزینه. در نهایت، بر عملیاتیسازی این رویکرد تأکید میکند—ادغام با CI/CD، هارنس تست سبک، A/B testing، تلهمتری و مانیتورینگ در تولید، و human-in-the-loop—تا از چند سناریوی کلیدی آغاز کرده و بهصورت تکرارشونده به یک استراتژی تست بالغ برسیم.
#AI
#AITesting
#LLMs
#PromptEngineering
#MCP
#TestStrategy
#QualityAssurance
🟣لینک مقاله:
https://cur.at/JJGTqaX?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Testing AI features: from 0 to Test Strategy
🟢 خلاصه مقاله:
این مقاله از Thiago Werner با عنوان Testing AI features: from 0 to Test Strategy میکوشد خواننده را برای آزمون ویژگیهای مبتنی بر هوش مصنوعی آماده کند. نویسنده ابتدا مروری کاربردی بر LLMs، MCPs و prompt engineering ارائه میدهد و نشان میدهد چرا ماهیت غیردترمینیستیک مدلها، تعامل با ابزارها و طراحی پرامپت، روش ارزیابی کیفیت را تغییر میدهد. سپس مسیر ساختن یک استراتژی تست را ترسیم میکند: تعیین معیارهای کیفیت، ارزیابی آفلاین با دیتاستهای طلایی و سناریوهای لبه، تستهای امنیتی و خصمانه، و سنجشهایی مانند موفقیت وظیفه، دقت/فکتوالیتی، پایداری، تأخیر و هزینه. در نهایت، بر عملیاتیسازی این رویکرد تأکید میکند—ادغام با CI/CD، هارنس تست سبک، A/B testing، تلهمتری و مانیتورینگ در تولید، و human-in-the-loop—تا از چند سناریوی کلیدی آغاز کرده و بهصورت تکرارشونده به یک استراتژی تست بالغ برسیم.
#AI
#AITesting
#LLMs
#PromptEngineering
#MCP
#TestStrategy
#QualityAssurance
🟣لینک مقاله:
https://cur.at/JJGTqaX?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Medium
Testing AI features: from 0 to Test Strategy
Get ready to test AI features in real world.
🔵 عنوان مقاله
Finally: Unit Testing for LLMs That Doesn't Require a PhD or $100K Budget
🟢 خلاصه مقاله:
** دکتر Ernesto Lee نشان میدهد برای ساخت اپلیکیشنهای مبتنی بر LLM لازم نیست PhD یا بودجههای بسیار بزرگ داشته باشید تا تست خودکار جدی و مؤثر پیاده کنید. ایده اصلی این است که هر prompt، chain و فراخوانی ابزار را مثل یک واحد مستقل با مشخصات روشن ببینید و برای آنها تست بنویسید: از اعتبارسنجی ساختار خروجی (مثلاً JSON Schema) و الزامات فیلدها، تا چکهای ایمنی/سیاست و نمونههای طلایی دامنهای. با snapshot test، دادههای نمونه کمحجم اما پوششدهنده لبهها، و mock/stub برای وابستگیهای خارجی، تستها سریع، ارزان و قابل تکرار میمانند.
برای کنترل هزینه و نوسان، میتوان پاسخها را cache کرد، بیشتر تستها را با temperature=0 اجرا نمود، محدودیت توکن گذاشت، و مجموعه تستهای «سریع» را از ارزیابیهای «سنگینتر» دورهای جدا کرد. نسخهدهی به promptها و دادههای طلایی، گزارشکردن معیارها و اتصال این چرخه به CI باعث میشود هر تغییر کد یا prompt فوراً ارزیابی شود و رگرسیونها دیده شوند. در صورت شکست تست، سریع مشخص کنید مشکل از تغییر prompt است، drift مدل بالادستی یا وابستگی ابزار، و همان یادگیری را به تستها برگردانید.
نتیجه این رویکرد، چرخه توسعه سریعتر با اطمینان بیشتر و هزینه کنترلشده است. پیام Lee روشن است: Unit Testing عملی و مقیاسپذیر برای LLMها در دسترس همه تیمهاست، نه فقط تیمهای بزرگ.
#LLM
#UnitTesting
#AIEngineering
#TestingAutomation
#MLOps
#PromptEngineering
#ContinuousIntegration
#QualityAssurance
🟣لینک مقاله:
https://cur.at/YHqFc9m?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Finally: Unit Testing for LLMs That Doesn't Require a PhD or $100K Budget
🟢 خلاصه مقاله:
** دکتر Ernesto Lee نشان میدهد برای ساخت اپلیکیشنهای مبتنی بر LLM لازم نیست PhD یا بودجههای بسیار بزرگ داشته باشید تا تست خودکار جدی و مؤثر پیاده کنید. ایده اصلی این است که هر prompt، chain و فراخوانی ابزار را مثل یک واحد مستقل با مشخصات روشن ببینید و برای آنها تست بنویسید: از اعتبارسنجی ساختار خروجی (مثلاً JSON Schema) و الزامات فیلدها، تا چکهای ایمنی/سیاست و نمونههای طلایی دامنهای. با snapshot test، دادههای نمونه کمحجم اما پوششدهنده لبهها، و mock/stub برای وابستگیهای خارجی، تستها سریع، ارزان و قابل تکرار میمانند.
برای کنترل هزینه و نوسان، میتوان پاسخها را cache کرد، بیشتر تستها را با temperature=0 اجرا نمود، محدودیت توکن گذاشت، و مجموعه تستهای «سریع» را از ارزیابیهای «سنگینتر» دورهای جدا کرد. نسخهدهی به promptها و دادههای طلایی، گزارشکردن معیارها و اتصال این چرخه به CI باعث میشود هر تغییر کد یا prompt فوراً ارزیابی شود و رگرسیونها دیده شوند. در صورت شکست تست، سریع مشخص کنید مشکل از تغییر prompt است، drift مدل بالادستی یا وابستگی ابزار، و همان یادگیری را به تستها برگردانید.
نتیجه این رویکرد، چرخه توسعه سریعتر با اطمینان بیشتر و هزینه کنترلشده است. پیام Lee روشن است: Unit Testing عملی و مقیاسپذیر برای LLMها در دسترس همه تیمهاست، نه فقط تیمهای بزرگ.
#LLM
#UnitTesting
#AIEngineering
#TestingAutomation
#MLOps
#PromptEngineering
#ContinuousIntegration
#QualityAssurance
🟣لینک مقاله:
https://cur.at/YHqFc9m?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Medium
Finally: Unit Testing for LLMs That Doesn’t Require a PhD or $100K Budget
Stop manually reviewing AI outputs like it’s 2019. This pytest-style framework (DeepEval) tests LLMs with 40+ metrics, catches…
❤2
🔵 عنوان مقاله
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
🟢 خلاصه مقاله:
** این مقاله از Santhosh Siddegowda نشان میدهد بهکارگیری AI در تست بهجای جایگزینی کامل، به معنای «نظارت هوشمندانه» است. او توضیح میدهد چگونه کیسهای کلاسیک QA به جریانهای AI-assisted تبدیل میشوند: بازنویسی بر پایه قصد کاربر و پرامپت، تعریف گاردریلها و اوراکلهای تست، و افزودن بازبینی Human-in-the-Loop برای مهار ناپایداری و خطاهای مدل. نویسنده بر عملیاتپذیری تأکید میکند—نسخهبندی پرامپتها، لاگبرداری و ارزیابی مداوم کیفیت—و نتیجه میگیرد که هرچند AI سرعت و پوشش تست را افزایش میدهد، موفقیت به سنجشپذیری، محرمانگی داده، معیارهای پذیرش روشن و نقش فعال انسان وابسته است. جمعبندی او: با موارد مناسب شروع کنید، گاردریل و اوراکل شفاف بسازید، اثر را اندازهگیری کنید و قضاوت انسانی را در مرکز نگه دارید؛ «AI babysitting» رویکردی مسئولانه برای قابلاعتماد کردن AI در QA است.
#AIinTesting #QA #TestAutomation #LLM #HumanInTheLoop #PromptEngineering #SoftwareQuality
🟣لینک مقاله:
https://cur.at/PnnqBWN?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
🟢 خلاصه مقاله:
** این مقاله از Santhosh Siddegowda نشان میدهد بهکارگیری AI در تست بهجای جایگزینی کامل، به معنای «نظارت هوشمندانه» است. او توضیح میدهد چگونه کیسهای کلاسیک QA به جریانهای AI-assisted تبدیل میشوند: بازنویسی بر پایه قصد کاربر و پرامپت، تعریف گاردریلها و اوراکلهای تست، و افزودن بازبینی Human-in-the-Loop برای مهار ناپایداری و خطاهای مدل. نویسنده بر عملیاتپذیری تأکید میکند—نسخهبندی پرامپتها، لاگبرداری و ارزیابی مداوم کیفیت—و نتیجه میگیرد که هرچند AI سرعت و پوشش تست را افزایش میدهد، موفقیت به سنجشپذیری، محرمانگی داده، معیارهای پذیرش روشن و نقش فعال انسان وابسته است. جمعبندی او: با موارد مناسب شروع کنید، گاردریل و اوراکل شفاف بسازید، اثر را اندازهگیری کنید و قضاوت انسانی را در مرکز نگه دارید؛ «AI babysitting» رویکردی مسئولانه برای قابلاعتماد کردن AI در QA است.
#AIinTesting #QA #TestAutomation #LLM #HumanInTheLoop #PromptEngineering #SoftwareQuality
🟣لینک مقاله:
https://cur.at/PnnqBWN?m=web
➖➖➖➖➖➖➖➖
👑 @software_Labdon
Santhoshsiddegowda
The Day I Became an AI "Babysitter" (And Why I'm Not Ashamed of It)
How helping transform traditional QA test cases into AI-assisted ones taught me that the future of testing isn't about replacing humans—it's about humans and AI working together