SciOne
15.9K subscribers
143 photos
44 videos
7 files
598 links
Когда наука даёт поводы для размышлений.

Новые ролики:
http://www.youtube.com/c/SciOne

Для сотрудничества:
partners@sci-one.tv
Download Telegram
А давайте заставим мух играть в видеоигры? А давайте, решили авторы этого исследования. Всё ради науки, конечно, а точнее: чтобы разобраться в одной из самых удивительных и загадочных структур, созданных природой — крыльях насекомых. Это толькоа кажется, что мы уже понимаем до конца, как они работают. Например, всё еще не ясно, вплоть до инженерных деталей, как крылья насекомых преобразуют незначительные движения мышц в энергию для столь маневренного и быстрого полёта.

Автор работы, помимо сложной и громоздкой экспериментальной установки, придумали целую видеоигру для мухи, чтобы одновременно регистрировать сокращения всех мельчайших мышц, приводящих в движение эти крохотные крылышки, и фиксировать их движения по всем трём осям.

Крылатое насекомое окружили панорамой из светодиодных экранов. VR на минималках. Окружение в игре могло как реагировать на движения мухи, так и им можно было управлять извне. Это позволяло исследователям менять ход полёта — заставлять уклоняться влево, вправо, вверх, вниз, ускоряться или замедляться.

Кажется, что смешное дело, а на деле архитектура эксперимента была очень сложной. Нужно было предельно точно (до нанометров) остлеживать движения 12 мельчайших мускулов крыльев мухи и их взаимодействия с трехмерными изменениями полета. Все операции выполнялись в реальном времени при сохранении комфортных условий для насекомых. Особенно это касалось температуры воздуха, мухи гораздо менее охотно летали при температуре выше 25 градусов по Цельсию.

Для отображения работы мускулов в режиме реального времени ученые использовали микроскоп, который проецировал свет определенной длины волны на муху для возбуждения люминофора в мускулах, движения которых потом тщательно записывались.

Что касается записи движения крыльев, то были использованы три высокоскоростные камеры, способные снимать с частотой 15 000 кадров в секунду. Эти камеры работали на максимально высоком разрешении, доступном для таких устройств. Снова и снова всё ради тех самых мельчайших движений и мышц.

В результате собрано гигантское количество данных по 72 000 взмахам крыльев! Часть этого массива пошла на обучение нейронной сети, способной предсказывать движение крыльев по активности мышц. Также была построена физическая модель мускульной системы крылышек мухи и шарниров, к которому эти крылышки прикреплены.

Пока что эксперименты проводились только на генномодифицированных плодовых мушках, но исследователи надеются, что в будущем смогут сравнить свои результаты с данными по москитам. Полученные знания авторы планируют использовать для создания компьютерных симуляций и разработки физических устройств, воспроизводящих работу крыльев.

Исследование

👾 Подписаться на SciOne 👾

#новости
Одна из форм прокрастинации, за которые стыдно, но меньше, чем за остальные — ролики по истории, особенно далекой и эпичной, как завоевание Англии человеком, который надолго сделал ее самой французской после Франции. Гео снял, как всегда, под стать истории — красиво, откровенно и увлекательно.

https://youtu.be/IVz7W51qNjA
Представьте себе ИИ-врача, которого не колбасит из-за галлюцинаций, то есть он, например, не прописывает несуществующее лекарства от вашей реальной болезни. Так вот Google со своим ИИ-танком в виде Deep Mind, отставая в гонке универсальных моделей вроде GPT-4 и Claude 3, сделали ход конем и выпустили Med-Gemini, которая специализируется в медицинских вопросах.

Это новое поколение мультимодальных систем, способных обрабатывать информацию из разных источников: текста, изображений, видео и аудио. Как работает Med-Gemini разбирается в работе на 58 страниц, ссылка на нее, как всегда, в конце поста.

Для постановки диагноза и выбора лечения врачам обычно нужно сочетать свои медицинские знания с множеством других данных: симптомами, историей болезни, результатами анализов и т.д. Med-Gemini умеет искать дополнительную информацию в интернете (на профильных медицинских ресурсах, куда ходят и врачи-люди уточнить свои знания), чтобы уточнить свои ответы на медицинские вопросы. Электронные медкарты могут быть очень объёмными, но врачи должны знать, что в них содержится, могут упускать детали. Med-Gemini может находить упоминания редких заболеваний и симптомов в огромных массивах медицинских записей. В тестовых беседах Med-Gemini задавал уточняющие вопросы пациенту, жалующемуся на зудящее образование на коже, попросил фото, поставил правильный диагноз и дад рекомендации по лечению. И всё это без специального обучения именно диалогам с пациентам, по которым поди найди или сделай сколь-нибудь внушительный датасет (врачебная тайна — юридическое серьезное препятствие для таких разработок)!

Конечно, исследователи признают, что предстоит ещё много работы. Необходимо учесть вопросы конфиденциальности, справедливости и безопасности, прежде чем такие системы можно будет применять в реальной медицине. Но заметьте, они в основном не инженерные, а юридические и социальные. А вы бы доверились такому врачу?

Исследование

👾 Подписаться на SciOne 👾

#новости
Доброе утро! На связи Влад. Это длиннопост про полезное и уже родное, над чем мы сейчас работаем. Мы начали выкатывать возможности, которых нет даже у ChatGPT. (Самому не верится).

Я уже рассказывал о проекте, который, как очень надеюсь, даст возможность любому без специальной подготовки что-то улучшить в своей жизни или в окружающем мире с помощью нейросетей — Upgraide.me.

Поначалу может показаться, что это просто удобное окно доступа к разным моделям от универсальных (могут всё) GPT-4 и Claude 3 до специализированных (и потому более эффективных в своих узких задачах) Command R или Mistral. Ну да, по ходу чата ты можешь перекидывать задачи от одной нейронки другой, и получать лучший результат. Но!

Это была только подготовка к следующему этапу, который разворачивается прямо сейчас.

- Теперь любой ваш чат в Upgraide — это отдельная база данных. Это означает, что какого бы размера ни был чат, любая нейронка в нем (GPT-4, Claude 3 или те, что мы подключим позже) имеет “память” по всем сообщениям чата (находить нужное, вспоминать старые сообщения, обрабатывать) без выдумывания того, что в чате не обсуждалось. Скоро мы сделаем следующий шаг, и вы сможете использовать преимущества такого хранения сообщений еще и при работе с файлами: загружать комплект нужных вам документов, книг, статей и, например, просить найти в них информацию, обсудить что-то. Это позволит использовать весь массив загруженных данных и сообщений, без нужды анализировать по частям, а потом ломать голову, как собрать все результаты, или начинать новый чат каждый раз, когда уже не влезаете в “контекстное окно”.

- Теперь в Upgraide вы можете на запрос получать ответы сразу от разных нейронок и выбрать у каждой то, что вам подходит больше или просто целиком лучший ответ. У вас есть наглядный выбор. Так я, например, извлеченные данные забрал из ответа Mistral (всегда данные все равно проверяйте!), а у Claude 3 взял саммари (часто лучше GPT-4 пишет на русском).

- И наконец теперь вы можете менять ответ нейронки (пока только последний). Буквально: над сообщением нажимаете кнопку и вы оказываетесь в окне творческого режима. Выделите любой кусок текста, да хоть букву, и укажите, что с ним сделать. Пока там тестовый набор функций: написать пост в соцсети, предложить идеи, сочинить по мотивам или сделать пресс-релиз. Так вы получаете превью того, что сгенерировала модель. И решаете, берете или заново пусть попробует. То есть теперь вы можете не только пинг-понгом запрос-ответ выколачивать из нейронок нужный результат. Вы можете нырять внутрь и работать с содержимым, чтобы дальше в чате продолжать уже с готовым результатом.

Сейчас Upgraide.me в раннем доступе, строим, чиним на ходу, поэтому любое ваше мнение, отзыв — это возможность сделать сервис идеальным для всех нас. Сколько всего мы сами с его помощью делаем... Заходите тестировать, ругаться, хвалить, предлагать то, чего не хватает лично вам и что можно было бы улучшить. У нас есть комьюнити в ТГ.

Кто хочет глянуть одним глазком — для вас бесплатный тариф с GPT-3.5 и Claude Haiku. Кто хочет все модели, — берите любой тариф, они по сути отличаются только количеством токенов на месяц. И обязательно применяйте промокод (кликните, и он скопируется):
SciOneAI

Так вам будет скидка 45%, а нам понятнее, насколько вам интересно вообще это всё.

P.S.
По дурацкому закону о маркировке, даже если ты рассказываешь о своём, но стоит упомянуть промокод — маркируй как рекламу. Иначе бо-бо. Так что пусть пылится в подвале поста:

Реклама. ООО "ЙОСЯ". ИНН 3019025533, erid: 3apb1Qrwwr2uBg1Hmi9vfGDsaCK6gjw8XMTpfY9R91jj6
Землетрясения — это, прежде всего, следствие движения тектонических плит земной коры. Однако учёные обнаружили, что некоторые землетрясения могут быть вызваны гораздо более неожиданными причинами. Например, снегопады и дожди.

Учёные присмотрелись к серии землетрясений, происходивших на японском полуострове Ното с конца 2020 года. В отличие от типичной последовательности "главный толчок - афтершоки", здесь наблюдалась серия множественных продолжающихся толчков без явного основного. Более того, у этих землетрясений не было очевидного сейсмического триггера.

Проанализировав данные о сейсмической активности в регионе, исследователи обнаружили любопытную закономерность. Начало серии "нетипичных" землетрясений на Ното в 2020 году оказалось синхронизировано с изменениями давления под землёй, на которые повлияли сезонные колебания погоды - выпадение осадков в виде дождей и снега.

Дождь и снег увеличивают поровое давление в земных трещинах и разломах, замедляя распространение сейсмических волн. Когда вода уходит или испаряется, давление падает, и волны распространяются быстрее. Учёные разработали трёхмерную модель, которая подтвердила, что сильные снегопады могут частично объяснить многие землетрясения на Ното.

Таким образом, даже такие привычные явления, как осадки, могут оказывать влияние на сейсмическую активность. Это открытие поможет лучше понять иные механизмы возникновения землетрясений и, возможно, в будущем научиться их прогнозировать.

Исследование

👾 Подписаться на SciOne 👾

#новости
Несмотря на невероятную вычислительную мощь мозга, ему все еще не под силу полностью понять самого себя. Но это не останавливает ученых, стремящихся создать полную "карту" нейронных связей — так называемый "коннектом" человеческого мозга.

И вот команда исследователей из Гарварда и Google Research опубликовала полнейшую на сегодня “карту” нейронных связей в человеческом мозге. Правда, речь идет всего о крошечном образце ткани размером с маковое зернышко - всего 1 кубический миллиметр. Но даже в этом микроскопическом объеме содержится 57 000 нейронов, 230 миллиметров кровеносных сосудов и 150 миллионов синапсов.

Картографирование этого крохотного фрагмента мозга породило колоссальный массив данных - 1,4 петабайта (1,4 миллиона гигабайт)! Для сравнения, это эквивалентно 28 000 двухслойных Blu-ray дисков, уложенных в стопку высотой 364 метра - выше, чем Статуя Свободы на вершине Эйфелевой башни. Представьте теперь, какой объём данных потребуется для всего мозга!

Анализируя эти данные, ученые обнаружили множество интересных деталей. Они раскрасили нейроны в разные цвета в зависимости от их размера и типа, создав изображения, напоминающие густые леса. Исследователи также заметили необычные "завихрения аксонов" - странные петли, образованные длинными отростками нейронов. Возможно, это связано с эпилепсией, которой страдал донор этого образца мозга.

Конечно, этот крошечный фрагмент - лишь малая часть огромной головоломки под названием "человеческий мозг". Ученые уже смогли картографировать мозг червя и половину мозга плодовой мушки. Теперь они переходят к более сложным задачам - картографированию мозга мышей. И хотя до полной "карты" человеческого мозга еще очень далеко, этот результат обнадеживает насчет будущих открытий в нейробиологии.

Исследование

👾 Подписаться на SciOne 👾

#новости
Казалось бы, о свойствах света мы знаем уже больше, чем нужно, однако ученые обнаружили ранее неизвестный способ взаимодействия света с веществом. Оказывается, такой материал, как кремний, на первый взгляд, скудный по своим оптическим свойствам, может излучать свет в ответ на видимое излучение, если его определённым образом обработать. Это открытие может помочь заметно улучшить, например, солнечные батареи, светодиоды и полупроводниковые лазеры.

Исследователи выяснили, что фотоны могут получать значительный импульс, аналогичный импульсу электронов в твердых материалах, когда они ограничены в наноразмерных пространствах в кремнии. Хотя ученые знали об этом явлении десятилетиями, точное происхождение свечения было предметом споров.

Это явление аналогично явлению комптоновского рассеяния. В 1923 году Артур Комптон обнаружил, что гамма-фотоны обладают достаточным импульсом для взаимодействия со свободными или связанными электронами, доказав, что свет обладает как волновыми, так и корпускулярными свойствами. В новых экспериментах ученые показали, что импульс гораздо менее мощного по сравнению с гамма-излечением видимого света, ограниченный нанокристаллами кремния, производит аналогичное оптическое взаимодействие в полупроводниках, что раньше считалось невозможным.

Понимание природы этого взаимодействия требует возврата к работам индийского физика Ч.В. Рамана, который в 1928 году безуспешно пытался повторить эксперимент Комптона с видимым светом из-за существенной разницы в импульсах электронов и видимых фотонов. Тем не менее, его исследования неупругого рассеяния в жидкостях и газах привели к открытию колебательного эффекта Рамана и спектроскопии, получившей его имя.

Новое открытие фотонного импульса в разупорядоченном кремнии связано с формой электронного рамановского рассеяния, которое, в отличие от обычного колебательного, включает различные начальные и конечные состояния электрона - явление, ранее наблюдавшееся только в металлах.

Это открытие бросает вызов нашему пониманию взаимодействия света и вещества, подчеркивая критическую роль импульса фотонов. В разупорядоченных системах согласование импульсов электронов и фотонов усиливает взаимодействие - аспект, ранее связанный только с высокоэнергетическими гамма-фотонами в классическом комптоновском рассеянии. В конечном счете, это исследование прокладывает путь к расширению применения оптической спектроскопии за пределы традиционного химического анализа в область структурных исследований. Это открытие позволит повысить эффективность устройств преобразования солнечной энергии и светоизлучающих материалов, включая те, которые ранее считались непригодными для излучения света. Будущее оптоэлектроники выглядит ярким!

Исследование

👾 Подписаться на SciOne 👾

#новости
Вы слышали про эксперимент "третья волна"?

Учитель за 5 дней из класса сделал тоталитарное сообщество. Это было в 1967 году, когда еще часто задавались вопросом, а как стал возможен Холокост. Так вот учителя и некоторых его учеников спустя 60 лет нашли ребята с канала "Нормальные люди" и сняли отличный документальный фильм, чтобы разобраться, как пропаганда может делать из детей чудовищ — и можно ли этому противостоять.

https://youtu.be/15PINop0u3c
Иногда быть мышью тревожно. Вот исследуете вы преспокойно окружающий мир, как вдруг замечаете кошачью лапу в щели за дверью. Что делать? Побить вряд ли побьете, а вот загрызть вас могут. Значит, бежать, конечно! Это мы тут рассудили так. А как мозг принимает за доли секунды это решение и помогает воплотить? Как ни странно в этом механизме до сих пор много загадок, а новое исследование помогает понять про него кое-что очень интересное: нейроны, которые помогают нам бежать, действуют как тормоз для мозга. Сейчас разберемся.

Эта автоматическая реакция известна как “бей или беги”, и по сути это физиологический процесс. Она помогает выживать, потому что срабатывает в ответ на нечто, что нервная система сочтет угрозой (не обязательно угроза должна быть реальной) и готовит организм к борьбе или к бегству от нее.

Главную роль, как считается, здесь играет миндалевидное тело — область мозга, отвечающая за обработку эмоций, включая страх. Когда мышь (или человек) сталкивается с угрозой, миндалевидное тело активируется и посылает сигналы в другие части мозга, в том числе гипоталамус. Гипоталамус, в свою очередь, активирует симпатическую нервную систему, что приводит к выбросу адреналина и норадреналина.

Эти гормоны вызывают цепочку физиологических изменений, например, учащение сердцебиения и дыхания, повышение артериального давления, расширение зрачков и перераспределение кровотока к мышцам. Все это подготавливает организм к быстрой реакции на угрозу.

Но ведь с таким запалом теперь можно и бежать и драться, так как же мозг решает, что делать? И как он координирует сложные двигательные действия, если решает бежать?

Чтобы ответить на эти вопросы, авторы нового исследования обратили внимание на область мозга, называемую околоводопроводное серое вещество (PAG, то есть periaqueductal gray или central gray). Эта структура находится в среднем мозге и играет ключевую роль для запуска и обеспечения защитных реакций, в том числе побега.

Предыдущие исследования показали, что в PAG есть разные группы нейронов, которые активируются в ответ на угрозу и запускают различные защитные реакции, например, замирание, агрессия или то же бегство. Но точные механизмы были непонятны.

Так вот в новом исследовании присмотрелись к “тормозным” нейронам в PAG. Они выделяют нейромедиатор гамма-аминомасляную кислоту (ГАМК), которая подавляет активность других нейронов.

Ученые обнаружили, что ГАМКергические нейроны в PAG обладают необычным свойством: они постоянно генерируют потенциалы действия (электрические импульсы), даже в отсутствие внешних стимулов. Это явление называется тонической активностью.

Получается, они действуют как тормоз, не позволяющий преждевременный запуск реакции, и как регулятор, контролирующий продолжительность и интенсивность движений во время побега.

То есть эти нейроны обеспечивают постоянное торможение возбуждающих нейронов в PAG, которые отвечают за запуск и поддержание двигательной активности.

Активность же “тормозных” нейронов изменяется в зависимости от контекста. Когда мышь сталкивается с угрозой, активность ГАМКергических нейронов снижается, что приводит к растормаживанию возбуждающих нейронов и запуску реакции побега.

А после начала побега активность ГАМКергических нейронов постепенно возрастает, достигая пика в момент прекращения движения. Это говорит о том, что ГАМКергические нейроны также участвуют в остановке реакции побега.

Ну выяснили и выяснили, но теперь мы можем работать с этими реакциями намного более осмысленно, что поможет с лечением тревожных расстройств и посттравматического стрессового расстройства, потому что они связаны с нарушениями в регуляции реакции «бей или беги».

👾 Подписаться на SciOne 👾

#новости
Вы когда-нибудь слышали (извините за каламбур) о скрытой потере слуха? Это такая штука, когда у человека слух по аудиограмме нормальный (в тесте, который проверяет, как хорошо вы слышите разные звуки), но тому же человеку трудно разбирать речь, особенно в шумных местах. Стоите вы на вечеринке, и вроде бы все говорят достаточно громко, но вы всё равно не можете разобрать слов. Или пытаетесь говорить по телефону в шумном кафе, динамик вроде хорошо работает, а вам все равно приходится серьезно напрягаться, чтобы понять собеседника. Вот это и есть оно самое — скрытая потеря слуха (СПС). Не самая большая беда, но может сильно портить жизнь. И тут в поисках решения исследователи получили у подопытных вдруг противоположное — сверхслух.

Ученые давно выяснили, что одна из причин СПС — это повреждение синапсов между внутренними волосковыми клетками и слуховыми нейронами. Синапсы передают сигналы от этих клеток к мозгу. Когда синапсы повреждаются, мозг получает меньше информации о звуках, и это означает проблемы со слухом, даже если сами внутренние волосковые клетки в порядке. А что же повреждает синапсы?

Они очень чувствительны к разным вредным воздействиям, например, шуму, а еще не любят стареть. До сих пор по-настоящему эффективных методов лечения СПС не было. Выручают, конечно, слуховые аппараты или кохлеарные импланты, но это костыли — способы как-то комепнсировать проблему, а не решить ее. Но даже они не всегда помогают, потому что проблема не в самих волосковых клетках, а в связях между ними и слуховых нейронами.

И вот авторы нового исследования сделали интересное открытие. Они обнаружили, что количество синапсов между внутренними волосковыми клетками и слуховыми нейронами можно регулировать с помощью белка под названием нейротрофин-3 (Ntf3). Этот белок вырабатывается опорными клетками, которые окружают внутренние волосковые клетки.

Более того, учёные выяснили, что если увеличить количество Ntf3 в опорных клетках, то увеличивается и количество синапсов. А если уменьшить количество Ntf3, то и синапсов становится меньше. Это означает, что мы наконец могли бы лечить скрытую потерю слуха. Гипотезу хорошо бы проверить. Для этого учёные провели эксперименты на мышах. И выяснилось, что грызуны с повышенным уровнем Ntf3 стали лучше слышать. Лучше, чем обычные мыши, а не больные. Учёные проверили это с помощью специальных тестов, которые измеряют, как мозг реагирует на звуки. А с мыши с пониженным уровнем Ntf3 слышали хуже — у них количество синпасов сократилось.

Эксперименты проводили на генетически-модифицированных грызунах, так что понять, как провернуть то же самое у людей — следующая весьма нетривиальная задача. И если мы сможем делать это безопасно, то не только поможем тем, у кого проблемы со слухом, но, видимо, сможем и улучшать его.

👾 Подписаться на SciOne 👾

#новости
Если вы завели щенка и у вас началась послеродовая хандра (не путать с депрессией), то это нормально, какого пола или гендера вы ни были бы. Што?! Да! Ученые впервые разработали шкалу для измерения послеродовой хандры у владельцев собак.

Вы наверняка слышали о послеродовой депрессии у молодых мам. Так вот, оказывается, похожие симптомы могут испытывать и новоиспеченные владельцы щенков — стресс, тревога, чувство вины, раздражительность, усталость, проблемы со сном. Это состояние еще называют "щенячьей хандрой" (или puppy blues, по аналогии с baby blues), штука хорошо известная среди собачников, но до сих пор почти не изучавшаяся всерьез.

Грустишь ну и грусти, зачем нужна еще какая-то шкала?

Во-первых, это поможет лучше понять, насколько распространена проблема и какие факторы на нее влияют.

Во-вторых, это позволит придумать методы, чтобы помочь тем, кто страдает от нее. Ведь если не обращать внимания даже на такую хандру, она может привести к более серьезным последствиям, например, собакена бросят. А этого мы не хотим, верно? Мы хотим, чтобы его любили и у него был дом, правда же?

Так вот исследование выявило три основных фактора, по которым можно определить и даже измерить щенячью хандру:

1. Фрустрация: чувство неудовлетворенности, раздражение по отношению к щенку, сожаление о его появлении.
2. Тревожность: беспокойство о благополучии щенка, чувство вины и некомпетентности как владельца.
3. Усталость: истощение, проблемы со сном, ощущение, что щенок отнимает все время и силы.

Опросник обкатали почти на двух тысячах собачников в Финляндии, и он показал хорошую надежность и валидность, то есть, похоже, действительно измеряет то, что должен измерять.

Заодно ученые увидели и картину в целом. Оказалось, что почти половина владельцев собак (45%) испытывали “значительный дискомфорт”, когда щенок появился в их доме (причем они же сами заводили его). При этом у 20% симптомы длились меньше месяца, у 31% — от 1 до 5 месяцев, у 29% — от полугода до года, а у 19% — больше года.

Интересно, что со временем воспоминания о щенячьем периоде становятся более позитивными. Это явление называется "искажение воспоминаний в сторону позитива" (fading affect bias).

В общем, теперь, получается, у нас есть первый инструмент для измерения щенячьей хандры. И это, кажется, только начало. Исследователи хотят изучить проблему основательнее, чтобы понять, что именно и как порождает факторы риска такого состояния и как можно эффективно и системно помогать владельцам щенков. Если будут научно обоснованные методики, то их могли бы применять сообщества собачников, чтобы помогать друг другу уже более продуктивно, а не по наитию. Немало собачников проходят курсы обучения своих питомцев, так что к ним вполне можно добавить и специальные тренинги или консультации для тех, кто только готовится завести щенка. Это помогло бы подготовиться к трудностям и избежать развития щенячьей хандры. Ну совсем, как с детьми. А разве эти малыши не дети?

👾 Подписаться на SciOne 👾

#новости
А помните были недавно еще громкие новости про то, как студенты то курсовые, то дипломные работы пишут с помощью ChatGPT (или каких еще больших языковых моделей) и успешно таки сдают? Уже менее шумно в ответ появлились новости про то, как вузы пробуют системы обнаружения сгенерированных текстов, чтобы систему оценок и с ней образования спасти. Так вот наконец за вопрос взялись по-научному. Авторы нового исследования решили проверить в контролируемом эксперименте, а готова ли система образования к натиску роботов под видом прилежных студентов, могут ли преподаватели распознать, где человек, а где искусственная нейронка отвечает. Эдакий “тест Тюринга” для профессоров. Спойлер: всё плохо. Очень плохо.

Ученые "внедрили" больше 30 работ, полностью написанных ИИ (использовали ChatGPT-4), в общий поток работ, которые шли на проверку у преподавателей в бакалавриате по психологии. Профессора не знали об эксперименте.

94% работ, авторства ИИ, прошли как человеческие. Более того, оценки у ИИ были в среднем на полбалла выше, чем у реальных студентов.

Занимательно, что единственный предмет, где студенты обошли ИИ, был финальный курс по психологии (заключительный модуль). Вероятно, потому что в абстрактном мышлении люди пока в целом сильнее ведущих больших языковых моделей, типа GPT-4. Но учитывая темпы развития этих алгоритмов, стоит подчеркнуть — пока. Интересно, посмотреть то же самое у инженеров и естественников-студентов, какие будут результаты.

Но вряд ли имеет смысл отрицать, что студенты с каждым выходом новых версий будут получать все более мощные модели для решения и математических задач, и сдачи экзаменов практически любой сложности. Ведь это экзамены, а не расширение пределов известного. И это потребует от систем образования меняться и довольно быстро (хотя бы за счет внедрения систем для выявления ИИ-работ), иначе наметится серьезный кризис. Ведь если способные студенты, кто прилежно учится, будет получать оценки хуже хитрых студентов, то вся система оценок как система поощрения и мотивации (ну, или контроля усвоения материала и наказания) потеряет смысл.

Впрочем, не факт, что это главная проблема. А надо ли готовить, как мы сейчас готовим, если человек уже справляется хуже с тем, что машина делает лучше. Логичнее было бы и учить, готовить к другому… Но это отдельный большой разговор. Если вы преподаете, поделитесь в комментариях своими страхами, ощущениями в преддверии вездесущих ИИ-генераций от ленивых/находчивых студентов. Может, у вас уже есть идеи, что стоит делать, чтобы система подготовки не посыпалась окончательно?

👾 Подписаться на SciOne 👾

#новости
Серьезно, если задуматься, нет очевидных причин, почему самцы млекопитающих не могут кормить своих детенышей молоком. У мужчин есть грудные железы, хотя обычно и недоразвитые. Этот, казалось бы, простой вопрос давно волнует эволюционных биологов. Грудные железы самцов, например, у бурых крыланов (Dayacopterus spadiceus), дают молоко. Чем же остальные мужики у млекопитающих хуже?

В новой работе в журнале Nature Communications ученые предлагают неожиданный (для меня точно) ответ на этот вопрос. Они полагают, что дело в микробах, которые передаются от родителей потомству через молоко.

Молоко - это не просто питательная жидкость, но и сложная экосистема со множеством микроорганизмов: бактериями, грибками и вирусами. Эти микроорганизмы составляют молочный микробиом, который сильно влияет на то, каким будет микробиом кишечника новорожденного.
Такая "вертикальная" передача микробов через грудное молоко почти гарантирует, что микроорганизмы, успешно служившие родителям, будут полезны и детям. Но если вдруг в молоке появятся вредные микробы, то и они могут передаться потомству, что потенциально опасно для всей популяции.

Исследователи использовали математические модели, чтобы показать, что двусторонняя вертикальная передача (то есть от обоих родителей) позволяет вредным микробам легче проникать в популяции хозяев. А однородительская вертикальная передача оказывается безопаснее, действуя как своеобразное "сито" для микробов.

Когда новый микроб впервые появляется в популяции, большинство спариваний хозяев, несущих этот микроб, происходит с неинфицированными особями. При двусторонней передаче микроб передается, если он есть у любого из родителей. Это дает микробу двукратное репродуктивное преимущество и позволяет ему быстро распространиться в популяции. Однородительская передача лишает микроб такого преимущества.

У плацентарных млекопитающих передача микробов происходит в основном во время родов, поэтому дальше передача молочного микробиома безопаснее, если она остается материнской. Это помогает избежать распространения потенциально вредных микроорганизмов.
Таким образом, объясняют ученые, живорождение и опасность двусторонней передачи молочного микробиома вместе создают эволюционное давление против лактации у самцов плацентарных млекопитающих.

Вроде бы разобрались, но как быть тогда бурыми крыланами, у которых самцы кормят своим молоком?

Ученые полагают, что это может быть связано с особенностями микробиома этих животных, который больше похож на микробиом птиц, чем у других млекопитающих. То есть это может быть связано с адаптациями к полету: например, меньше кишечник, меньше микробная биомасса и более аэробные условия в самом кишечнике. Если кишечный микробиом менее важен для этих животных, это могло бы ослабить давление отбора против лактации у самцов.

👾 Подписаться на SciOne 👾

#новости #биология #микробиология #бактерии #микробиом #здоровье
Однажды просыпаешься и понимаешь, что жизнь бессмысленная, чувствуешь себя подавленным, ничто не радует, свет в тебе будто погас. Решаешь обратиться за помощью к врачам и психологам, ищешь информацию в интернете на сайтах авторитетных организаций... и что там видишь? Тебе говорят, что у тебя депрессия, и именно она — причина твоих бед. Вроде логично?

А вот ученые из Финляндии Яни Каяноя и Юсси Валтонен задались вопросом в новом исследовании: а насколько корректно ставить знак равенства между диагнозом и причиной болезни? Не является ли это подменой понятий, которая вводит в заблуждение и врачей, и пациентов?

Тут важно помнить, что психиатрические диагнозы — штука довольно сложная. В отличие от многих соматических заболеваний (например, пневмонии или диабета), где причина болезни часто ясна (инфекция, нарушение обмена веществ), в психиатрии диагнозы ставятся по описанию симптомов. То есть, говоря "депрессия", мы имеем в виду набор определенных признаков: подавленное настроение, потеря интереса к жизни, нарушения сна и аппетита и так далее. Но что вызывает эти симптомы? Вот тут-то и начинается самое интересное.

Авторы исследования обращают внимание на распространенную ошибку: часто диагноз "депрессия" используется как объяснение причин этих симптомов. Получается замкнутый круг: "У вас депрессия, потому что у вас симптомы депрессии". Но ведь это не объясняет, почему возникли эти симптомы, что их вызвало. Такая подмена понятий может привести к неправильному пониманию болезни и, как следствие, к неэффективному лечению.

И вот авторы исследования, чтобы выяснить, насколько распространена эта проблема в авторитетных источниках, решили проанализировать информацию о депрессии на сайтах ведущих в мире организаций в здравоохранении. Они выбрали 30 самых высокоранговых, наиболее авторитетных сайтов госучреждений, некоммерческих организаций, профессиональных ассоциаций психиатров и университетов.

Ученые внимательно изучили, как на этих сайтах описывается причинно-следственная связь между депрессией и ее симптомами. А перед этим выделили три категории описаний и смотрели, на каком сайте какое из этих трех встречается:

1. Причинно-объяснительные: когда депрессия прямо называется причиной симптомов (например, "депрессия вызывает чувство подавленности, потерю интереса к жизни...").

2. Описательные: когда депрессия представляется как набор симптомов (например, "депрессия — это психическое расстройство, характеризующееся...").

3. Неопределенные: когда характер причинно-следственной связи не ясен.

Результаты такого анализа оказались весьма неожиданными. Ни один из проанализированных сайтов не давал четкого описательного определения депрессии, хотя оно как раз было корректным с научной точки зрения. Зато на 53% сайтов депрессия прямо или косвенно называлась причиной своих же симптомов. Например, на сайте Всемирной организации здравоохранения говорится, что депрессия — это "распространенное заболевание во всем мире... которое может привести к сильному страданию и ухудшению функционирования на работе, в школе и в семье".

Авторы исследования считают, что так не годится. Ведь сайты авторитетных организаций — это важный источник информации для людей, страдающих депрессией, их близких и врачей. И если эта информация неточна, это может привести к негативным последствиям для всех.

Так что ученые предлагают несколько решений.

Во-первых, надо четко разграничивать понятия "диагноз" и "причина". Диагноз — это всего лишь ярлык, описывающий набор симптомов, а не объяснение их происхождения.

Во-вторых, нужно больше рассказывать о том, что депрессия — это сложное явление, которое может иметь множество причин, как биологических, так и психологических, и социальных.

В-третьих, важно подчеркивать, что депрессия — это не приговор, а состояние, которое можно и нужно лечить.

Словом, надо быть настороже, даже когда имеешь дело даже с авторитетными источниками.

Берегите себя и близких, и хорошего вам дня, друзья!

👾 Подписаться на SciOne 👾

#новости
Смотрю, не все выдерживают столь бурное оживление в нашей группе, но я вам скажу так: мы продолжим до конца недели работу в таком режиме, а потом проведем опрос, как вам.

Ход мысли такой: хочется, чтобы ТГ Сайвана имел смысл. Превращать его просто в новостную ленту смысла нет, потому что такого полно. Делать блогом с моей интровертностью еще бессмысленнее. А вот делиться исследованиями, которые не ложатся в ролик (извините, здесь никакой логики, чисто интуиция и вкусовщина моя), но что-то новое открывают (опять уж извините, для меня) или полезны могут быть для всех нас — тут, кажется, группа в ТГ смысл начинает обретать.

Но насколько кто готов лонгриды здесь читать, — вопрос. Отсюда тестовая неделя. А дальше посмотрим 🤓
Помню, мама всегда старалась, чтобы я попал в особую школу, куда учеников отбирают, а значит, в целом они там должны быть более способные, так? Сейчас у меня и многих моих ровесников самих дети подрастают и невольно задумываешься, а в какую школу лучше отдать их. Кажется, что школы, куда академический отбор, дадут лучше и подготовку, и будущее у выпускников светлее. Но так ли это? Новое исследование ставит под большой вопрос эту надежду или даже убеждение многих родителей.

Как ни странно, серьезных исследований тут маловато. Нет, было много исследований о том, почему родители выбирают школы с отбором учеников. Речь именно про отбор по способностям, а не по кошельку родителей. Выяснялось, что родители верят: такие школы дают детям больше шансов поступить в престижные университеты и получить высокооплачиваемую работу.

Но действительно ли выпускники школ для “избранных” успешнее во взрослой жизни, — таких исследований было мало. Особенно таких, где отследили бы на горизонте в 5-10 лет, как складывается карьера этих выпускников.

И вот в новой работе ученые использовали крутую штуку — Longitudinal Surveys of Australian Youth (LSAY). Это большое исследование, в котором отслеживается жизнь молодых австралийцев в течение 11 лет, с 15 до 25 лет. В рамках этого же исследования директора школ заполняют анкеты о своих учениках и политике приема в школу, что тоже важно было для ученых.

Затем исследователи применили алгоритм подбора «ближайшего соседа». Это такой статистический метод. Он позволил им сравнивать людей с похожими характеристиками, но посещавших разные школы, и тем самым понять, действительно ли "отборные" школы дают преимущество, или же успех выпускников связан с другими факторами, например, с их способностями или семейным доходом.

Результаты оказались довольно неожиданными. Выяснилось, что выпускники школ с отбором не имеют значительных преимуществ в образовании и трудоустройстве по сравнению с выпускниками обычных школ. Но в данных выделялись два небольших, но статистически значимых эффекта.

Во-первых, выпускники школ отбор, сообщали о немного более высокой общей удовлетворенности жизнью.

Во-вторых, выпускники школ, где отбирают только некоторых учеников или иногда, имели немного меньшую вероятность быть частично или полностью устроенными на работу в возрасте 25 лет.

Но одна из главных проблем исследования — это то, что про политику отбора в нем мы знаем только со слов директоров школ. Авторы этот нюанс учитывают и говорят, что надо больше исследований. Например, нужно выяснить, как разные виды отбора влияют на долгосрочные результаты выпускников, и какие факторы играют роль в их успехе.

Ну и далеко не у всех школ прозрачен процесс отбора. Как составляются задания, по каким критериям оцениваются абитуриенты — полно нюансов, которые могут делать поступление радикально отличающимся в двух разных школах с академическим отбором учеников.

👾 Подписаться на SciOne 👾

#наука #образование #школы
Media is too big
VIEW IN TELEGRAM
Ладно, не только лонгриды. НАСА недавно выпустило новую симуляцию полета в чёрную дыру. Мы перевели и озвучили ролик с объяснениями, но если хотите в формате 360 и только полёт, то вот и на него ссылка: https://youtu.be/dGEIsnBRWGs
Вы когда-нибудь замечали, что чаинки в чашке собираются в центре, когда вы размешиваете чай ложкой? Это явление известно как парадокс чайного листа. Оно интересует учёных века с 19-го. Даже Эйнштейн делал научный доклад, где разбирался в природе явления. Казалось бы, центробежная сила должна отбрасывать чаинки к краям чашки, но на деле всё происходит наоборот. Группа исследователей по-новому взглянула на этот парадокс и обнаружила удивительные эффекты, которые могут пригодиться от робототехники до очистки крови.

За находку спасибо астрофизику Сергею Попову.

👾 Подписаться на SciOne 👾

#наука #физика #парадокс #эйнштейн