Forwarded from Machinelearning
RLtools - библиотека глубокого обучения с подкреплением (Deep Reinforcement Learning, DRL) с высокой скоростью работы для разработки и исследования алгоритмов DL.
RLtools написана на C++ и позволяет проводить обучение и вывод моделей DRL на РС, мобильных устройствах и embedded-системах. В экспериментальном тестировании, библиотека обучила алгоритм RL непосредственно на микроконтроллере.
Библиотека поддерживает алгоритмы DRL: TD3, PPO, Multi-Agent PPO и SAC и предлагает набор примеров, демонстрирующих использование этих алгоритмов для решения задач управления на примерах управления маятником, гоночным автомобилем и роботом-муравьем MuJoCo.
Код реализации алгоритмов:
Благодаря оптимизации и использования аппаратного ускорения RLtools в 76 раз быстрее других библиотек. Например, на MacBook Pro с M1 RLtools может обучить модель SAC (управление маятником) за 4 секунды.
Библиотеку можно использовать на Linux, macOS, Windows, iOS, Teensy, Crazyflie, ESP32 и PX4.
RLtools предоставляет Python API, с которым можно использовать библиотеку из Python-кода. API RLtools совместим с библиотекой симуляции сред Gym.
Проекты, использующие RLtools:
# Clone and checkout
git clone https://github.com/rl-tools/example
cd example
git submodule update --init external/rl_tools
# Build and run
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
./my_pendulum
@ai_machinelearning_big_data
#AI #ML #DL #RTools #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5🥰3😨3
Forwarded from Python/ django
This media is not supported in your browser
VIEW IN TELEGRAM
Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.
🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.
📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.
🔗 Подробнее
🔗 Github
@pythonl
#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29😁10❤5🔥4🥴4🥰2🤬2
Forwarded from Machinelearning
OpenAI представляет Codex — облачного агента для генерации кода, способного выполнять множество задач параллельно.
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
▪ Релиз: https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
▪ Релиз: https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
👍13🤣9❤3🥰2🖕2💊1
Forwarded from Machinelearning
Новый XChat теперь доступен с шифрованием, самоуничтожением сообщений, возможностью отправки любых типов файлов и поддержкой аудио- и видеозвонков.
Приложение создано на Rust и использует шифрование (как в Биткойн) и новую архитектуру.
А еще можно звонить без номера телефона.
@ai_machinelearning_big_data
#elonmusk #ai #news #ml #grok
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24😁11❤9🔥6🤣5🥰1👏1🎉1🤝1
Forwarded from Machinelearning
Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.
- параллельный запуск агентов
- визуальный трекинг задач
- переключение между моделями на лету
— встроенный review и контроль над результатами
— backend на Rust, frontend на React, всё разворачивается локально
Полностью open-source
@ai_machinelearning_big_data
#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11🤣8👍5🔥3🖕2🥰1🤬1
Forwarded from Machinelearning
Stack Overflow Developer Survey — это крупнейшее ежегодное исследование среди разработчиков по всему миру, которое проводит платформа Stack Overflow.
В 15‑й год в опросе приняли участие более 49 000 разработчиков из 177 стран. Опрос охватил 62 вопроса по 314 технологиям
76 % респондентов — профессиональные разработчики, большинство из них (66 %) — в возрасте 25–44 лет
- 80 % пишут код с помощью AI.
- Но лишь 29 % доверяют результатам ИИ (в 2024 было 40 %).
- 66 % тратят больше времени на отладку AI-кода, чем на его написание.
🏆 Claude Sonnet от Anthropic стала самой уважаемой LLM-моделью года — её отметили 67.5 % опрошенных.
💡 Но по желанию использовать на первом месте всё ещё OpenAI GPT — 51.2 % хотят с ней работать чаще всего.
- Cargo признан самым уважаемым DevOps‑инструментом (обогнал даже Terraform).
- Rust стабильно в топе любимых языков.
💡 Учёба и рост:
- 69 % изучают новые технологии, 44 % — с помощью AI.
- 36 % учат код ради AI-задач.
👨💻 VS Code лидирует, но Neovim — кумир:
- VS Code — самый используемый редактор.
- Neovim — самый «перспективный».
🧑🤝🧑 Сообщества & платформы
- 84 % разработчиков активно использовали Stack Overflow ( верится с трудом) в течение года (GitHub 67 %, YouTube 61 %)
- В опросе выяснилось: 35 % посещают SO из‑за проблем, связанных с AI‑кодом — ищут проверенную людьми информацию
📉 Меньше участников:
- В 2025 — 49k респондентов (в 2023 было 90k).
- Разработчики всё чаще критикуют перекос в сторону AI.
😕 Удовлетворённость работой & зарплаты
- Предыдущий опрос показал, что 80 % разработчиков были либо неудовлетворены, либо в состоянии «разочарованности» на работе. Интересно, как изменились показатели в 2025 году.
- В 2024 году выяснилось, что гибкость и зарплата перестали вносить равный вклад в удовлетворённость, теперь зарплата выше оказывает сильный эффект для топ‑25 % зарплатной шкалы
.- К примеру, мобильные и back‑end разработчики в UK и Нидерландах стали более удоволетворены работой за счёт более высоких зарплат
📎 Отчёт целиком: https://survey.stackoverflow.co/2025
@ai_machinelearning_big_data
#ai #stackoverflow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤7🔥5🥰1
🚀 vivo открывает исходники ядра BlueOS (Blue River) на Rust!
📅 23 июля 2025 г. на конференции OpenAtom Open Source в Пекине вице-президент vivo и руководитель vivo AI Global Research Institute объявил о полной открытости ядра BlueOS, написанного на Rust.
💡 Ключевые особенности BlueOS:
Интеграция AI Engine: архитектура глубоко сочетается с фреймворком Blue Heart для поддержки продвинутых AI-алгоритмов и мультимодального ввода
Сина Файненс
Плавность и высокая производительность: полностековые оптимизации в вычислениях, хранении и рендеринге для максимальной отзывчивости системы
Сина Файненс
Родная безопасность памяти: благодаря Rust устраняется до 70 % уязвимостей, связанных с неверным управлением памятью, на самом низком уровне
Сина Файненс
🔗 Узнайте больше → https://blueos.vivo.com/activity/details?id=94&data=blueRiver (включайте автоперевод)
🔗Github: https://github.com/vivoblueos/kernel
#BlueOS #BlueRiverOS #Rust #OpenSource #AI #vivo
📅 23 июля 2025 г. на конференции OpenAtom Open Source в Пекине вице-президент vivo и руководитель vivo AI Global Research Institute объявил о полной открытости ядра BlueOS, написанного на Rust.
💡 Ключевые особенности BlueOS:
Интеграция AI Engine: архитектура глубоко сочетается с фреймворком Blue Heart для поддержки продвинутых AI-алгоритмов и мультимодального ввода
Сина Файненс
Плавность и высокая производительность: полностековые оптимизации в вычислениях, хранении и рендеринге для максимальной отзывчивости системы
Сина Файненс
Родная безопасность памяти: благодаря Rust устраняется до 70 % уязвимостей, связанных с неверным управлением памятью, на самом низком уровне
Сина Файненс
🔗 Узнайте больше → https://blueos.vivo.com/activity/details?id=94&data=blueRiver (включайте автоперевод)
🔗Github: https://github.com/vivoblueos/kernel
#BlueOS #BlueRiverOS #Rust #OpenSource #AI #vivo
❤14🔥10🥰3🤣2👍1😁1