Python/ django
61.1K subscribers
2.16K photos
92 videos
48 files
2.88K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
Forwarded from Machinelearning
🌟 Google LangExtract: библиотека извлечения структуры из любого текста.

LangExtract - опенсорсная python-библиотека с функцией легковесного интерфейса к LLM, которая превращает большие объемы текста в структурированные данные.

🟡 Ключевая особенность LangExtract на фоне других инструментов - точный фокус на источник.

Каждая извлеченная сущность, будь то имя, дата или дозировка лекарства, привязывается к точным символьным смещениям в исходном тексте. Это дает полную прослеживаемость и верифицируемость результата, просто подсветив найденные данные в оригинальном документе. Больше никаких «откуда модель это взяла?».

🟡 Вторая сильная сторона - надежность выходных данных.

Вы определяете желаемый формат вывода с помощью специального представления данных и даете модели несколько примеров . Используя эти примеры, LangExtract следует заданной схеме, задействуя механизм контролируемой генерации, который поддерживается в моделях Gemini. Это гарантирует, что на выходе вы всегда будете получать данные в консистентном, предсказуемом формате.

🟡LangExtract умеет работать с действительно большими объемами.

Библиотека умеет бить текст на чанки, которые обрабатываются параллельно в несколько проходов, каждый из которых фокусируется на более узком контексте.

Для наглядности библиотека умеет генерировать интерактивную и полностью автономную HTML-визуализацию. Это позволяет за считаные минуты перейти от сырого текста к визуальному представлению, где можно исследовать тысячи извлеченных аннотаций.

При этом LangExtract не замыкается на экосистеме Google: он поддерживает гибкую смену LLM-бэкендов, позволяя работать как с облачными моделями, так и с опенсорсными решениями, развернутыми локально.

🟡LangExtract может задействовать "мировые знания" LLM для обогащения данных.

Информация может быть как явной (извлеченной из текста), так и основанной на внутренних знаниях модели. Разумеется, точность таких выведенных данных сильно зависит от возможностей конкретной LLM и качества предоставленных примеров в промпте.

Изначально идеи, заложенные в LangExtract, были применены для извлечения информации из медицинских текстов. Библиотека отлично справляется с идентификацией лекарств, их дозировок и других атрибутов в клинических записях.

Чтобы продемонстрировать возможности инструмента в узкоспециализированной области, Google создал на Hugging Face интерактивное демо RadExtract. В нем показано, как LangExtract может обработать радиологический отчет, написанный свободным текстом, и автоматически преобразовать его ключевые выводы в структурированный формат, подсвечивая важные находки.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🖥Github


@ai_machinelearning_big_data

#AI #ML #LangExtract #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥85👍3