Python/ django
61.1K subscribers
2.16K photos
92 videos
48 files
2.88K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
Две правды, одна ложь: популярные концепции о «выдающихся программистах»

Кент Бек (Kent Beck), легендарный разработчик ПО, создатель методологий экстремального программирования и test-driven development и автор многих книг по программированию, однажды сказал: «Я не великий программист, я просто хороший программист с замечательными привычками». Какими привычками и способностями обладают «рок-звезды» программирования?

Попробуем разобрать три популярные утверждения о «суперпрограммистах», чтобы понять, что из них — правда, а что — скорее преувеличение.

Читать дальше → https://goo.gl/GgDrLM

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Программировать хочу, пусть меня научат! Образовательные проекты Avito

Привет! Меня зовут Анна, я руководитель образовательных проектов в Avito. Нам кажется очень важным способствовать тому, чтобы начинающие (и не только) разработчики узнавали о самых крутых технологиях на рынке. Поэтому мы делаем целый пул образовательных онлайн-проектов в партнёрстве с лучшими площадками. Подробно о них рассказываю под катом, там же раскрываю наши планы на будущее.
Читать дальше → https://goo.gl/NH4EDy

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Коллективный разум, помогай. Как вы знаете, сегодня мы дали возможность пользователям с положительной кармой отключить рекламу. И по этому поводу писали пост-анонс.

Автор публикации в качестве КДПВ (картинки для привлечения внимания) вспомнил про тёплую ламповую надпись "Теперь питание компьютера можно отключить", дизайнер же сказал, что она не очень и нарисовал свой вариант, более новогодний (а посыл поста и правда завязан на новогодний подарок всем тем, кто хорошо себя вёл на сайте).

Спор, драка, вот это всё ) Помогите узнать, кто выиграл баттл.

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Pygest #20. Релизы, статьи, интересные проекты, пакеты и библиотеки из мира Python [6 декабря 2017 — 23 декабря 2017]
#python #pirsipy

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
[Перевод] Пошаговое руководство по написанию сервиса для Kubernetes

От автора. Уже пятый декабрь подряд в блоге GopherAcademy самые разные представители Go-сообщества делятся своим опытом в рамках специальной предрождественской серии постов. В этом году я тоже решила предложить свою статью, написанную по мотивам первой части нашего с Игорем Должиковым мастер-класса по микросервисам. На Хабре небольшую часть этого руководства мы уже рассматривали ранее.
Если вы когда-либо пробовали Go, вы знаете, что писать сервисы на Go очень просто. Нам нужно буквально несколько строк кода для того, чтобы можно было запустить http-сервис. Но что нужно добавить, если мы хотим приготовить такое приложение в продакшн? Давайте рассмотрим это на примере сервиса, который готов к запуску в Kubernetes.
Все шаги из этой статьи можно найти в одном теге, или вы можете следить за примерами статьи коммит за коммитом. Читать дальше → https://goo.gl/YcwSsk

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
"Шагающий" белок кинезин
═════════════════════
Еще в 2007 году японские исследователи сумели пронаблюдать под микроскопом работу одного из «молекулярных моторов» живой клетки — шагающего белка миозина V, который умеет активно передвигаться вдоль актиновых волокон и перетаскивать прикрепленные к нему грузы. Каждый шаг миозина V начинается с того, что одна из его «ног» (задняя) отделяется от актиновой нити.

Затем вторая нога наклоняется вперед, а первая свободно вращается на «шарнире», соединяющем ноги молекулы, до тех пор, пока случайно не коснется актиновой нити. Конечный итог хаотического движения первой ноги оказывается строго детерминирован благодаря фиксированному положению второй. Данный бело выполняет функцию водителя в организме.

#gif@physics_math
#биология@physics_math
#химия@physics_math
#интересные_факты@physics_math

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
[Из песочницы] Коротко об HTML 5.2

Уважаемые коллеги, добрый день.

В связи с тем, что 14.12.2017 года W3C в блоге объявила о выходе новой редакции HTML 5, предлагаю Вашему вниманию краткое описания основных нововведений.

Новации

Поддержка модульного JavaScript
На мой взгляд, самая интересная и ожидаемая новация связана с поддержкой модульного синтаксиса последнего стандарта ECMA Script.

Читать дальше → https://goo.gl/qH94FT

#python #код #django #питон #джанго #программирование #cod #coding #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Forwarded from Machinelearning
⚡️ BRIA Background Removal v2.0 Model.

RMBG v2.0 - новая модель удаления фона, предназначенная для эффективного отделения переднего плана от фона в различных категориях и типах изображений. Точность, эффективность и универсальность RMBG v2.0 конкурирует с ведущими SOTA-моделями.

RMBG-2.0 разработана на основе архитектуры BiRefNet и обучена на более чем 15 000 высококачественных, высокого разрешения, вручную маркированных (с точностью до пикселя), полностью лицензированных изображений.

Модель доступна на HF в двух версиях : pytorch и safetensors. Демо можно попробовать на HF Space.

▶️Пример кода запуска на Transformers:

from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()

# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')

# Prediction
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)

image.save("no_bg_image.png")


📌Лицензирование:

🟢Некоммерческое использование: Creative Commons license
🟠Коммерческое использование: на основании коммерческого соглашения с BRIA


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #BiRefNet #RMBG #BRIAAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1710🔥5
Forwarded from Machinelearning
🌟 cuPyNumeric: замена NumPy от NVIDIA.

По мере роста объемов данных и сложности вычислений, вычисления на Python и NumPy, основанные на CPU, нуждаются в ускорении для выполнения современных исследований.

cuPyNumeric разработана, чтобы стать заменой библиотеки NumPy, предоставляя сообществу Python распределенные и ускоренные вычисления на платформе NVIDIA. cuPyNumeric позволяет масштабировать вычисления без изменения кода проектов с одного CPU до суперкомпьютеров с несколькими GPU и вычислительными нодами.

Библиотека построена на Legate, поддерживает родной Python и интерфейс NumPy. cuPyNumeric доступен из conda (версия не ниже 24.1) в legate channel. На системах с GPU пакеты, поддерживающие графические ускорители будут выбраны автоматически во время установки.

Пример эффективности cuPyNumeric - обработка 10 ТБ микроизображений многоракурсной микроскопии в виде одного массива NumPy за один день с визуализаций в режиме реального времени.

▶️Установка и тест на примере из репозитория:

# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric

# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
👍138🔥3
Forwarded from Machinelearning
⚡️ TRELLIS: универсальная модель для генерации 3D-контента от Microsoft.

TRELLIS - модель для создания высококачественных 3D-объектов на основе текстового промпта или изображения с помощью унифицированного представления Structured LATent (SLAT), которое декодирует данные в форматы: Radiance Fields, 3D-гауссианы и полигональные сетки.

SLAT обладает универсальностью, используя комбинацию из разреженной 3D-сетки и плотных визуальных признаков, извлеченных моделью DINOv2 из входного изображения.

TRELLIS использует модифицированные rectified flow transformers, адаптированные для работы с SLAT. Обучение набора моделей TRELLIS, размерами до 2 млрд. параметров, выполнялось на датасете из 500 тыс. разнообразных 3D-объектов.

Пока в открытый доступ опубликована только Image-to-3D версия - TRELLIS-image-large с 1.2 млрд. параметров. Остальные вариации модели для генерации 3D по тексту: TRELLIS-text-base (342М), TRELLIS-text-large (1.1В) и TRELLIS-text-xlarge (2В) и код для их трейна будут представлены позже (сроки не указаны).

⚠️ Для локального запуска TRELLIS-image-large рекомендуется NVIDIA GPU с VRAM 16GB или больше.

▶️Установка и запуск c WebUI (Gradio):

# Clone repo
git clone --recurse-submodules https://github.com/microsoft/TRELLIS.git
cd TRELLIS

# Create conda env and install dependencies
. ./setup.sh --new-env --basic --flash-attn --diffoctreerast --spconv
--mipgaussian --kaolin --nvdiffrast

# Install web demo via Gradio
. ./setup.sh --demo

# Run WebUI
python app.py


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ImageTo3D #Trellis #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍76
Forwarded from Machinelearning
🌟 Apollo: семейство мультимодальных моделей для понимания медиаконтента.

Apollo - набор MMLM, которые умеют решать разные задачи с видеоконтентом. Они могут понимать длинные видео, рассуждать о событиях во времени и поддерживать многосторонние видео-диалоги.

Модели показывают высокую производительность даже при относительно небольшом размере в 3 млрд. параметров, превосходя по эффективности конкурентов с моделями в 7В-30В параметров.

Этого удалось достичь благодаря тщательному проектированию и комбинированию SigLIP-SO400M (для изображений) и InternVideo2 (для видео). Их синергия дает более устойчивое представление на задачах временных рассуждений.

▶️ Семейство состоит из трех моделей:

🟢Apollo 7B
🟢Apollo 3B
🟢Apollo 1.5B

⚠️ Код для тонкой настройки, применение LoRA в Apollo и документацию разработчики обещают опубликовать позднее. Пока в репозитории проекта размещен только пример инференса на Transformers.


📌Лицензирование кода : Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Demo Apollo-3B
🖥GitHub



@ai_machinelearning_big_data

#AI #ML #MMLM #Apollo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍124🔥3
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🌍 WebRover – это автономный ИИ-агент , предназначенный для взаимодействия с элементами веб-страниц и выполнения пользовательских запросов.

Агент построен на базе LangChain и LangGraph и в первую очередь создан, чтобы освободить пользователей от рутины, связанной с поиском и сбором информации.

Благодаря глубокому пониманию контекста и способности автоматически определять нужные элементы, WebRover эффективно справляется даже со сложными задачами.

Основные возможности WebRover включают:
- самостоятельную навигацию по сайтам, управление состоянием через LangGraph и автоматизированное взаимодействие с браузером посредством Playwright.
- агент способен анализировать содержимое страниц, делать скриншоты и формировать структурированные ответы и парить информацию.

Особенности
🤖 Навигация на основе GPT-4 для понимания контекста и интеллектуальной навигации по веб-сайтам
🎯 Интеллектуальное обнаружение элементов: Автоматически идентифицирует и взаимодействует с любыми элементами сайтов
📸 Визуальная обратная связь: Визуализация процесса навигации в реальном времени
🔄 Автономная работа: Самокорректирующаяся навигация со стратегиями обратного хода

git clone https://github.com/hrithikkoduri18/webrover.git
cd webrover
cd backend


Github

@ai_machinelearning_big_data


#aiagents #ai #ml #opensource
12👍4🔥3
🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍7🔥4