Andriy Burkov, ML at Gartner, author of The Hundred-Page Machine Learning book:
People dealing with machine learning models are frequently confusing accuracy, precision, and recall.
Accuracy is the ratio of correct predictions in all examples used for testing. So, you tested your model on 100 examples (some of them are positives, some are negatives, the ratio doesn't matter). The model correctly predicted the label of 97 examples of those 100, so your accuracy is 97/100 = 0.97.
Precision is a measure of accuracy on the labels of interest only. Often, the labels of interest are positive labels (i.e., spam), but it depends on the application. So, you tested your model on 100 examples. The model predicted as spam 80 of them, but only 60 of those 80 were correct predictions, so your precision is 60/80 = 0.75.
Recall is a measure of how many examples of interest your model has identified as such. Let's say you have 100 examples, you know that 70 of them are spam. Your model only predicted as spam 60 of those 70. So your recall is 60/70 = 0.86.
Accuracy and precision are easy to confuse, but they represent totally different quantities, so be careful when you use these terms in conversations and reports.
Precision and recall usually have a relationship of being mutually exclusive. When you try to increase precision, you decrease recall and vice versa.
#machinelearning #artificialintelligence
@pythonicAi
People dealing with machine learning models are frequently confusing accuracy, precision, and recall.
Accuracy is the ratio of correct predictions in all examples used for testing. So, you tested your model on 100 examples (some of them are positives, some are negatives, the ratio doesn't matter). The model correctly predicted the label of 97 examples of those 100, so your accuracy is 97/100 = 0.97.
Precision is a measure of accuracy on the labels of interest only. Often, the labels of interest are positive labels (i.e., spam), but it depends on the application. So, you tested your model on 100 examples. The model predicted as spam 80 of them, but only 60 of those 80 were correct predictions, so your precision is 60/80 = 0.75.
Recall is a measure of how many examples of interest your model has identified as such. Let's say you have 100 examples, you know that 70 of them are spam. Your model only predicted as spam 60 of those 70. So your recall is 60/70 = 0.86.
Accuracy and precision are easy to confuse, but they represent totally different quantities, so be careful when you use these terms in conversations and reports.
Precision and recall usually have a relationship of being mutually exclusive. When you try to increase precision, you decrease recall and vice versa.
#machinelearning #artificialintelligence
@pythonicAi
Pythonic AI
@pythonicAi
یکی از مسائل علمی داغ و پرچالش دنیا این است که یادگیری ماشین روی دستگاههای مختلف (موبایل، مچبند هوشمند، دستگاههای پزشکی) انجام شود. به این ترتیب، پروتزی که در بدن یک فرد گذاشته میشود هوشمند خواهد بود.
یکی از چالشها، نیاز به پردازنده قوی و حافظه بالا است. میتوان دادهها را به یک سرور قوی منتقل کرد، اما این کار مشکلاتی مانند نقض حریم شخصی و عدم تضمین ارتباط با شبکه دارد.
پژوهش برای یادگیری روی خود دستگاهها شروع شده، اما این کارها خاصمنظوره هستند و دقت آنها هم عموما بالا نیست. به همین دلیل آقای کشاورز الگوریتمی برای یادگیری روی خود دستگاه ساخته، و نامش را «صفر» گذاشته که به دلیل زمان اجرا و انرژی مصرفیاش بود.
هدف این بوده که الگوریتم را روی میکروکنترلر Arduino Uno اجرا کنند که پردازنده 20 مگاهرتزی و رم 2 کیلوبایتی دارد و قیمتش در حال حاضر 79 هزار تومان است. این الگوریتم باید بسیار بسیار ساده میبوده و این چالش اصلی بوده.
در ویدیو، چراغی یک ثانیه روشن است و 1.2 ثانیه خاموش. آن 0.2 ثانیه زمانی است که صرف یادگیری ماشین روی دادههای با اندازه معقول میشود.
کاربردهای این الگوریتم شامل پزشکی تا خانههای هوشمند و دستگاههای صنعتی میشود. این اولین الگوریتم عاممنظوره جدیدی است که برای یادگیری روی دستگاهها ساخته شده است.
صفر یک الگوریتم Classification با زمان اجرا و انرژی مصرفی بسیار پایین است.
لینک مقاله:
https://arxiv.org/abs/2006.04620
آدرس لینکدین آقای کشاورز:
https://www.linkedin.com/in/hamidreza-keshavarz-54aa532a
#machinelearning #artificialintelligence #paper
@pythonicAi
یکی از چالشها، نیاز به پردازنده قوی و حافظه بالا است. میتوان دادهها را به یک سرور قوی منتقل کرد، اما این کار مشکلاتی مانند نقض حریم شخصی و عدم تضمین ارتباط با شبکه دارد.
پژوهش برای یادگیری روی خود دستگاهها شروع شده، اما این کارها خاصمنظوره هستند و دقت آنها هم عموما بالا نیست. به همین دلیل آقای کشاورز الگوریتمی برای یادگیری روی خود دستگاه ساخته، و نامش را «صفر» گذاشته که به دلیل زمان اجرا و انرژی مصرفیاش بود.
هدف این بوده که الگوریتم را روی میکروکنترلر Arduino Uno اجرا کنند که پردازنده 20 مگاهرتزی و رم 2 کیلوبایتی دارد و قیمتش در حال حاضر 79 هزار تومان است. این الگوریتم باید بسیار بسیار ساده میبوده و این چالش اصلی بوده.
در ویدیو، چراغی یک ثانیه روشن است و 1.2 ثانیه خاموش. آن 0.2 ثانیه زمانی است که صرف یادگیری ماشین روی دادههای با اندازه معقول میشود.
کاربردهای این الگوریتم شامل پزشکی تا خانههای هوشمند و دستگاههای صنعتی میشود. این اولین الگوریتم عاممنظوره جدیدی است که برای یادگیری روی دستگاهها ساخته شده است.
صفر یک الگوریتم Classification با زمان اجرا و انرژی مصرفی بسیار پایین است.
لینک مقاله:
https://arxiv.org/abs/2006.04620
آدرس لینکدین آقای کشاورز:
https://www.linkedin.com/in/hamidreza-keshavarz-54aa532a
#machinelearning #artificialintelligence #paper
@pythonicAi
Forwarded from Pythonic AI (Soroush Hashemi far)
Intro: A New Way to Start Linear Algebra, by Gilbert Strang
Edition: 2020
Link
Youtube videos
#course #linalg #math #machinelearning #artificialintelligence
@pythonicAi
Edition: 2020
Link
Youtube videos
#course #linalg #math #machinelearning #artificialintelligence
@pythonicAi
MIT OpenCourseWare
A Vision of Linear Algebra | Mathematics | MIT OpenCourseWare
This collection of videos presents Professor Strang’s updated vision of how linear algebra could be taught.
It starts with six brief videos, recorded in 2020, containing many ideas and suggestions about the recommended order of topics in teaching and learning…
It starts with six brief videos, recorded in 2020, containing many ideas and suggestions about the recommended order of topics in teaching and learning…
Mathematics for Machine Learning
https://mml-book.github.io/book/mml-book.pdf
#math #machinelearning #artificialintelligence #book
@pythonicAi
https://mml-book.github.io/book/mml-book.pdf
#math #machinelearning #artificialintelligence #book
@pythonicAi
شرکت Amazon یه سری کورس رایگان گذاشته که قبلا فقط برای کارمندانش بوده. این آموزشها شامل 9 بخشه که سه بخش اولش شامل:
🔸NLP
🔸Computer Vision
🔸Tabular Data
میشه. اگه به ماشین لرنینگ و دیتاساینس علاقه دارید، فرصت رو از دست ندید.
Youtube channel
متریال آموزشی هم اینجاست👇
https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp
https://github.com/aws-samples/aws-machine-learning-university-accelerated-cv
https://github.com/aws-samples/aws-machine-learning-university-accelerated-tab
#machinelearning #datascience #computervision #nlp #artificialintelligence #course
@pythonicAi
🔸NLP
🔸Computer Vision
🔸Tabular Data
میشه. اگه به ماشین لرنینگ و دیتاساینس علاقه دارید، فرصت رو از دست ندید.
Youtube channel
متریال آموزشی هم اینجاست👇
https://github.com/aws-samples/aws-machine-learning-university-accelerated-nlp
https://github.com/aws-samples/aws-machine-learning-university-accelerated-cv
https://github.com/aws-samples/aws-machine-learning-university-accelerated-tab
#machinelearning #datascience #computervision #nlp #artificialintelligence #course
@pythonicAi
MIT launched a New free Course on Machine learning
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/about
#machinelearning #artificialintelligence #course
@pythonicAi
https://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019/about
#machinelearning #artificialintelligence #course
@pythonicAi
openlearninglibrary.mit.edu
Introduction to Machine Learning
This course introduces principles, algorithms, and applications of machine learning from the point of view of modeling and prediction. It includes formulation of learning problems and concepts of representation, over-fitting, and generalization. These concepts…
Federated Learning
چیست؟
A machine learning procedure where the goal is to train a high-quality model with data distributed over several independent providers.
به این شکل که بجای جابجا کردن دیتا بین سرورها و تجمیع آنها، مدل ها و الگوریتمها دست به دست میشوند.
اهمیت federated learning در کیس های زیر مشخص میشود:
- حفظ حریم شخصی کاربران اهمیت زیادی دارد
- جابجایی دیتا از یک سرور به سرور دیگر ممکن است هزینه زیادی به بار آورد
- محافظت از دیتا (data protection) اهمیت بالایی دارد
#artificialintelligence #machinelearning
@pythonicAi
چیست؟
A machine learning procedure where the goal is to train a high-quality model with data distributed over several independent providers.
به این شکل که بجای جابجا کردن دیتا بین سرورها و تجمیع آنها، مدل ها و الگوریتمها دست به دست میشوند.
اهمیت federated learning در کیس های زیر مشخص میشود:
- حفظ حریم شخصی کاربران اهمیت زیادی دارد
- جابجایی دیتا از یک سرور به سرور دیگر ممکن است هزینه زیادی به بار آورد
- محافظت از دیتا (data protection) اهمیت بالایی دارد
#artificialintelligence #machinelearning
@pythonicAi
7 Awesome Open Source Machine Learning Project Repos
1⃣ DeOldify
2⃣ Real-Time Voice Cloning
3⃣ Face Recognition
4⃣ NeuralTalk2
5⃣ U-GAT-IT
6⃣ Srez
7⃣ TecoGAN
#artificialintelligence #machinelearning
@pythonicAi
1⃣ DeOldify
2⃣ Real-Time Voice Cloning
3⃣ Face Recognition
4⃣ NeuralTalk2
5⃣ U-GAT-IT
6⃣ Srez
7⃣ TecoGAN
#artificialintelligence #machinelearning
@pythonicAi
GitHub
GitHub - jantic/DeOldify: A Deep Learning based project for colorizing and restoring old images (and video!)
A Deep Learning based project for colorizing and restoring old images (and video!) - jantic/DeOldify
Forwarded from Pythonic AI (Soroush Hashemi far)
Mathematics for Machine Learning
https://mml-book.github.io/book/mml-book.pdf
#math #machinelearning #artificialintelligence #book
@pythonicAi
https://mml-book.github.io/book/mml-book.pdf
#math #machinelearning #artificialintelligence #book
@pythonicAi
1. Deep Science: Using machine learning to study anatomy, weather and earthquakes (20 hours ago)
https://techcrunch.com/2021/01/04/deep-science-using-machine-learning-to-study-anatomy-weather-and-earthquakes
2. How artificial intelligence will be used in 2021 (December 31, 2020)
https://techcrunch.com/2020/12/31/how-artificial-intelligence-will-be-used-in-2021
3. National Grid sees machine learning as the brains behind the utility business of the future (December 24, 2020)
https://techcrunch.com/2020/12/24/national-grid-sees-machine-learning-as-the-brains-behind-the-utility-business-of-the-future
4. Arthur.ai snags $15M Series A to grow machine learning monitoring tool (December 9, 2020)
https://techcrunch.com/2020/12/09/arthur-ai-snags-15m-series-a-to-grow-machine-learning-monitoring-tool
5. AWS expands on SageMaker capabilities with end-to-end features for machine learning (December 9, 2020)
https://techcrunch.com/2020/12/08/aws-expands-on-sagemaker-capabilities-with-end-to-end-features-for-machine-learning
6. AWS announces SageMaker Clarify to help reduce bias in machine learning models (December 8, 2020)
https://techcrunch.com/2020/12/08/aws-announces-sagemaker-clarify-to-help-reduce-bias-in-machine-learning-models
7. Tecton.ai nabs $35M Series B as it releases machine learning feature store (December 7, 2020)
https://techcrunch.com/2020/12/07/tecton-ai-nabs-35m-series-b-as-it-releases-machine-learning-feature-store
8. AWS launches SageMaker Data Wrangler, a new data preparation service for machine learning (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-launches-sagemaker-data-wrangler-a-new-data-preparation-service-for-machine-learning
9. AWS announces Panorama, a device that adds machine learning technology to any camera (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-announces-panorama-a-device-adds-machine-learning-technology-to-any-camera
10. AWS launches Trainium, its new custom ML training chip (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-launches-trainium-its-new-custom-ml-training-chip
#machinelearning #artificialintelligence #news
@pythonicAI
https://techcrunch.com/2021/01/04/deep-science-using-machine-learning-to-study-anatomy-weather-and-earthquakes
2. How artificial intelligence will be used in 2021 (December 31, 2020)
https://techcrunch.com/2020/12/31/how-artificial-intelligence-will-be-used-in-2021
3. National Grid sees machine learning as the brains behind the utility business of the future (December 24, 2020)
https://techcrunch.com/2020/12/24/national-grid-sees-machine-learning-as-the-brains-behind-the-utility-business-of-the-future
4. Arthur.ai snags $15M Series A to grow machine learning monitoring tool (December 9, 2020)
https://techcrunch.com/2020/12/09/arthur-ai-snags-15m-series-a-to-grow-machine-learning-monitoring-tool
5. AWS expands on SageMaker capabilities with end-to-end features for machine learning (December 9, 2020)
https://techcrunch.com/2020/12/08/aws-expands-on-sagemaker-capabilities-with-end-to-end-features-for-machine-learning
6. AWS announces SageMaker Clarify to help reduce bias in machine learning models (December 8, 2020)
https://techcrunch.com/2020/12/08/aws-announces-sagemaker-clarify-to-help-reduce-bias-in-machine-learning-models
7. Tecton.ai nabs $35M Series B as it releases machine learning feature store (December 7, 2020)
https://techcrunch.com/2020/12/07/tecton-ai-nabs-35m-series-b-as-it-releases-machine-learning-feature-store
8. AWS launches SageMaker Data Wrangler, a new data preparation service for machine learning (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-launches-sagemaker-data-wrangler-a-new-data-preparation-service-for-machine-learning
9. AWS announces Panorama, a device that adds machine learning technology to any camera (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-announces-panorama-a-device-adds-machine-learning-technology-to-any-camera
10. AWS launches Trainium, its new custom ML training chip (December 1, 2020)
https://techcrunch.com/2020/12/01/aws-launches-trainium-its-new-custom-ml-training-chip
#machinelearning #artificialintelligence #news
@pythonicAI
TechCrunch
National Grid sees machine learning as the brains behind the utility business of the future
If the portfolio of a corporate venture capital firm can be taken as a signal for the strategic priorities of their parent companies, then National Grid has high hopes for automation as the future of the utility industry.