๐ฐ ๐๐ถ๐ด๐ต-๐๐บ๐ฝ๐ฎ๐ฐ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ฎ๐๐ป๐ฐ๐ต ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kC18XE
These courses help you gain hands-on experience โ exactly what top MNCs look for!โ ๏ธ
These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kC18XE
These courses help you gain hands-on experience โ exactly what top MNCs look for!โ ๏ธ
Time Complexity of 10 Most Popular ML Algorithms
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
๐1
๐ญ๐ฌ๐ฌ๐ฌ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ป๐ณ๐ผ๐๐๐ โ ๐๐ฒ๐ฎ๐ฟ๐ป, ๐๐ฟ๐ผ๐, ๐ฆ๐๐ฐ๐ฐ๐ฒ๐ฒ๐ฑ!๐
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
๐ Looking to upgrade your skills without spending a rupee?๐ฐ
Hereโs your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more โ all absolutely FREE on Infosys Springboard!๐ฅ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!โ ๏ธ
๐1
Python Full Stack Developer Roadmap:
Stage 1: HTML โ Learn webpage basics.
Stage 2: CSS โ Style web pages.
Stage 3: JavaScript โ Add interactivity.
Stage 4: Git + GitHub โ Manage code versions.
Stage 5: Frontend Project โ Build a simple project.
Stage 6: Python (Core + OOP) โ Learn Python fundamentals.
Stage 7: Backend Project โ Use Flask/Django for backend.
Stage 8: Frameworks โ Master Flask/Django features.
Stage 1: HTML โ Learn webpage basics.
Stage 2: CSS โ Style web pages.
Stage 3: JavaScript โ Add interactivity.
Stage 4: Git + GitHub โ Manage code versions.
Stage 5: Frontend Project โ Build a simple project.
Stage 6: Python (Core + OOP) โ Learn Python fundamentals.
Stage 7: Backend Project โ Use Flask/Django for backend.
Stage 8: Frameworks โ Master Flask/Django features.
๐1
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ: ๐ง๐ต๐ฒ ๐๐ฒ๐๐ ๐ฆ๐๐ฎ๐ฟ๐๐ถ๐ป๐ด ๐ฃ๐ผ๐ถ๐ป๐ ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต & ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐๐
๐ Want to break into tech or data analytics but donโt know how to start?๐โจ๏ธ
Python is the #1 most in-demand programming language, and Scalerโs free Python for Beginners course is a game-changer for absolute beginners๐โ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45TroYX
No coding background needed!โ ๏ธ
๐ Want to break into tech or data analytics but donโt know how to start?๐โจ๏ธ
Python is the #1 most in-demand programming language, and Scalerโs free Python for Beginners course is a game-changer for absolute beginners๐โ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45TroYX
No coding background needed!โ ๏ธ
Guys, Big Announcement!
Weโve officially hit 2 MILLION followers โ and itโs time to take our Python journey to the next level!
Iโm super excited to launch the 30-Day Python Coding Challenge โ perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python โ bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereโs what youโll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic โ Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs โ Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with โค๏ธ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
Weโve officially hit 2 MILLION followers โ and itโs time to take our Python journey to the next level!
Iโm super excited to launch the 30-Day Python Coding Challenge โ perfect for absolute beginners, interview prep, or anyone wanting to build real projects from scratch.
This challenge is your daily dose of Python โ bite-sized lessons with hands-on projects so you actually code every day and level up fast.
Hereโs what youโll learn over the next 30 days:
Week 1: Python Fundamentals
- Variables & Data Types (Build your own bio/profile script)
- Operators (Mini calculator to sharpen math skills)
- Strings & String Methods (Word counter & palindrome checker)
- Lists & Tuples (Manage a grocery list like a pro)
- Dictionaries & Sets (Create your own contact book)
- Conditionals (Make a guess-the-number game)
- Loops (Multiplication tables & pattern printing)
Week 2: Functions & Logic โ Make Your Code Smarter
- Functions (Prime number checker)
- Function Arguments (Tip calculator with custom tips)
- Recursion Basics (Factorials & Fibonacci series)
- Lambda, map & filter (Process lists efficiently)
- List Comprehensions (Filter odd/even numbers easily)
- Error Handling (Build a safe input reader)
- Review + Mini Project (Command-line to-do list)
Week 3: Files, Modules & OOP
- Reading & Writing Files (Save and load notes)
- Custom Modules (Create your own utility math module)
- Classes & Objects (Student grade tracker)
- Inheritance & OOP (RPG character system)
- Dunder Methods (Build a custom string class)
- OOP Mini Project (Simple bank account system)
- Review & Practice (Quiz app using OOP concepts)
Week 4: Real-World Python & APIs โ Build Cool Apps
- JSON & APIs (Fetch weather data)
- Web Scraping (Extract titles from HTML)
- Regular Expressions (Find emails & phone numbers)
- Tkinter GUI (Create a simple counter app)
- CLI Tools (Command-line calculator with argparse)
- Automation (File organizer script)
- Final Project (Choose, build, and polish your app!)
React with โค๏ธ if you're ready for this new journey
You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/1661
Forwarded from Python Projects & Resources
๐ญ๐ฌ๐ฌ% ๐๐ฟ๐ฒ๐ฒ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e76jMX
Enroll For FREE & Get Certified!โ ๏ธ
From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4e76jMX
Enroll For FREE & Get Certified!โ ๏ธ
10 Public APIs you can use for your next project
๐ http://restcountries.com - Country data API
๐ฑ http://trefle.io - Plants data API
๐http://api.nasa.gov - Space-related API
๐ต http://developer.spotify.com - Music data API
๐ฐ http://newsapi.org - Access news articles
๐ http://sunrise-sunset.org/api - Sunrise and sunset times API
๐ฒ http://pokeapi.co - Pokรฉmon data API
๐ฅ http://omdbapi.com - Movie database API
๐ http://catfact.ninja - Cat facts API
๐ถ http://thedogapi.com - Dog picture API
๐ http://restcountries.com - Country data API
๐ฑ http://trefle.io - Plants data API
๐http://api.nasa.gov - Space-related API
๐ต http://developer.spotify.com - Music data API
๐ฐ http://newsapi.org - Access news articles
๐ http://sunrise-sunset.org/api - Sunrise and sunset times API
๐ฒ http://pokeapi.co - Pokรฉmon data API
๐ฅ http://omdbapi.com - Movie database API
๐ http://catfact.ninja - Cat facts API
๐ถ http://thedogapi.com - Dog picture API
Restcountries
REST Countries
Get information about countries via a RESTful API
Forwarded from Python Projects & Resources
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ณ๐ฟ๐ผ๐บ ๐ฆ๐ฐ๐ฟ๐ฎ๐๐ฐ๐ต ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ฏ Want to break into Machine Learning but donโt know where to start?โจ๏ธ
You donโt need a fancy degree or expensive course to begin your ML journey๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jRouYb
This list is for anyone ready to start learning ML from scratchโ ๏ธ
๐ฏ Want to break into Machine Learning but donโt know where to start?โจ๏ธ
You donโt need a fancy degree or expensive course to begin your ML journey๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jRouYb
This list is for anyone ready to start learning ML from scratchโ ๏ธ
9 tips to learn Python for Data Analysis:
๐ Start with the basics: variables, loops, functions
๐งน Master Pandas for data manipulation
๐ข Use NumPy for numerical operations
๐ Visualize data with Matplotlib and Seaborn
๐ Work with real datasets (CSV, Excel, APIs)
๐งผ Clean and preprocess messy data
๐ Understand basic statistics and correlations
โ๏ธ Automate repetitive analysis tasks with scripts
๐ก Build mini-projects to apply your skills
Free Python Resources: https://t.me/pythonanalyst
Like for more daily tips ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐ Start with the basics: variables, loops, functions
๐งน Master Pandas for data manipulation
๐ข Use NumPy for numerical operations
๐ Visualize data with Matplotlib and Seaborn
๐ Work with real datasets (CSV, Excel, APIs)
๐งผ Clean and preprocess messy data
๐ Understand basic statistics and correlations
โ๏ธ Automate repetitive analysis tasks with scripts
๐ก Build mini-projects to apply your skills
Free Python Resources: https://t.me/pythonanalyst
Like for more daily tips ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐1
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐: ๐ฑ ๐ฆ๐๐ฒ๐ฝ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ผ๐๐ฟ๐ป๐ฒ๐๐
Want to break into Data Science but donโt know where to begin?๐จโ๐ป๐
Youโre not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐ซ๐ฒ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SU5FJ0
No prior experience needed!โ ๏ธ
Want to break into Data Science but donโt know where to begin?๐จโ๐ป๐
Youโre not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐ซ๐ฒ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3SU5FJ0
No prior experience needed!โ ๏ธ
๐1
๐ Roadmap to Become a Software Architect ๐จโ๐ป
๐ Programming & Development Fundamentals
โโ๐ Master One or More Programming Languages (Java, C#, Python, etc.)
โโโ๐ Learn Data Structures & Algorithms
โโโโ๐ Understand Design Patterns & Best Practices
๐ Software Design & Architecture Principles
โโ๐ Learn SOLID Principles & Clean Code Practices
โโโ๐ Master Object-Oriented & Functional Design
โโโโ๐ Understand Domain-Driven Design (DDD)
๐ System Design & Scalability
โโ๐ Learn Microservices & Monolithic Architectures
โโโ๐ Understand Load Balancing, Caching & CDNs
โโโโ๐ Dive into CAP Theorem & Event-Driven Architecture
๐ Databases & Storage Solutions
โโ๐ Master SQL & NoSQL Databases
โโโ๐ Learn Database Scaling & Sharding Strategies
โโโโ๐ Understand Data Warehousing & ETL Processes
๐ Cloud Computing & DevOps
โโ๐ Learn Cloud Platforms (AWS, Azure, GCP)
โโโ๐ Understand CI/CD & Infrastructure as Code (IaC)
โโโโ๐ Work with Containers & Kubernetes
๐ Security & Performance Optimization
โโ๐ Master Secure Coding Practices
โโโ๐ Learn Authentication & Authorization (OAuth, JWT)
โโโโ๐ Optimize System Performance & Reliability
๐ Project Management & Communication
โโ๐ Work with Agile & Scrum Methodologies
โโโ๐ Collaborate with Cross-Functional Teams
โโโโ๐ Improve Technical Documentation & Decision-Making
๐ Real-World Experience & Leadership
โโ๐ Design & Build Scalable Software Systems
โโโ๐ Contribute to Open-Source & Architectural Discussions
โโโโ๐ Mentor Developers & Lead Engineering Teams
๐ Interview Preparation & Career Growth
โโ๐ Solve System Design Challenges
โโโ๐ Master Architectural Case Studies
โโโโ๐ Network & Apply for Software Architect Roles
โ Get Hired as a Software Architect
React "โค๏ธ" for More ๐จโ๐ป
๐ Programming & Development Fundamentals
โโ๐ Master One or More Programming Languages (Java, C#, Python, etc.)
โโโ๐ Learn Data Structures & Algorithms
โโโโ๐ Understand Design Patterns & Best Practices
๐ Software Design & Architecture Principles
โโ๐ Learn SOLID Principles & Clean Code Practices
โโโ๐ Master Object-Oriented & Functional Design
โโโโ๐ Understand Domain-Driven Design (DDD)
๐ System Design & Scalability
โโ๐ Learn Microservices & Monolithic Architectures
โโโ๐ Understand Load Balancing, Caching & CDNs
โโโโ๐ Dive into CAP Theorem & Event-Driven Architecture
๐ Databases & Storage Solutions
โโ๐ Master SQL & NoSQL Databases
โโโ๐ Learn Database Scaling & Sharding Strategies
โโโโ๐ Understand Data Warehousing & ETL Processes
๐ Cloud Computing & DevOps
โโ๐ Learn Cloud Platforms (AWS, Azure, GCP)
โโโ๐ Understand CI/CD & Infrastructure as Code (IaC)
โโโโ๐ Work with Containers & Kubernetes
๐ Security & Performance Optimization
โโ๐ Master Secure Coding Practices
โโโ๐ Learn Authentication & Authorization (OAuth, JWT)
โโโโ๐ Optimize System Performance & Reliability
๐ Project Management & Communication
โโ๐ Work with Agile & Scrum Methodologies
โโโ๐ Collaborate with Cross-Functional Teams
โโโโ๐ Improve Technical Documentation & Decision-Making
๐ Real-World Experience & Leadership
โโ๐ Design & Build Scalable Software Systems
โโโ๐ Contribute to Open-Source & Architectural Discussions
โโโโ๐ Mentor Developers & Lead Engineering Teams
๐ Interview Preparation & Career Growth
โโ๐ Solve System Design Challenges
โโโ๐ Master Architectural Case Studies
โโโโ๐ Network & Apply for Software Architect Roles
โ Get Hired as a Software Architect
React "โค๏ธ" for More ๐จโ๐ป
๐3
๐ง๐ผ๐ฝ ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐ - ๐๐ฟ๐ฎ๐ฐ๐ธ ๐ฌ๐ผ๐๐ฟ ๐ก๐ฒ๐
๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐
๐ฆ๐ค๐:- https://pdlink.in/3SMHxaZ
๐ฃ๐๐๐ต๐ผ๐ป :- https://pdlink.in/3FJhizk
๐๐ฎ๐๐ฎ :- https://pdlink.in/4dWkAMf
๐๐ฆ๐ :- https://pdlink.in/3FsDA8j
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/4jLOJ2a
๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ :- https://pdlink.in/4dFem3o
๐๐ผ๐ฑ๐ถ๐ป๐ด :- https://pdlink.in/3F00oMw
Get Your Dream Tech Job In Your Dream Company๐ซ
๐ฆ๐ค๐:- https://pdlink.in/3SMHxaZ
๐ฃ๐๐๐ต๐ผ๐ป :- https://pdlink.in/3FJhizk
๐๐ฎ๐๐ฎ :- https://pdlink.in/4dWkAMf
๐๐ฆ๐ :- https://pdlink.in/3FsDA8j
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ :- https://pdlink.in/4jLOJ2a
๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ :- https://pdlink.in/4dFem3o
๐๐ผ๐ฑ๐ถ๐ป๐ด :- https://pdlink.in/3F00oMw
Get Your Dream Tech Job In Your Dream Company๐ซ
๐2
Python For Everything!๐
Python, the versatile language, can be combined with various libraries to build amazing things:๐
1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development
#Python
Python, the versatile language, can be combined with various libraries to build amazing things:๐
1. Python + Pandas = Data Manipulation
2. Python + Scikit-Learn = Machine Learning
3. Python + TensorFlow = Deep Learning
4. Python + Matplotlib = Data Visualization
5. Python + Seaborn = Advanced Visualization
6. Python + Flask = Web Development
7. Python + Pygame = Game Development
8. Python + Kivy = Mobile App Development
#Python
๐2
Creating a data science portfolio is a great way to showcase your skills and experience to potential employers. Here are some steps to help you create a strong data science portfolio:
1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.
2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.
3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.
4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.
5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.
6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.
7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.
8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.
By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
1. Choose relevant projects: Select a few data science projects that demonstrate your skills and interests. These projects can be from your previous work experience, personal projects, or online competitions.
2. Clean and organize your code: Make sure your code is well-documented, organized, and easy to understand. Use comments to explain your thought process and the steps you took in your analysis.
3. Include a variety of projects: Try to include a mix of projects that showcase different aspects of data science, such as data cleaning, exploratory data analysis, machine learning, and data visualization.
4. Create visualizations: Data visualizations can help make your portfolio more engaging and easier to understand. Use tools like Matplotlib, Seaborn, or Tableau to create visually appealing charts and graphs.
5. Write project summaries: For each project, provide a brief summary of the problem you were trying to solve, the dataset you used, the methods you applied, and the results you obtained. Include any insights or recommendations that came out of your analysis.
6. Showcase your technical skills: Highlight the programming languages, libraries, and tools you used in each project. Mention any specific techniques or algorithms you implemented.
7. Link to your code and data: Provide links to your code repositories (e.g., GitHub) and any datasets you used in your projects. This allows potential employers to review your work in more detail.
8. Keep it updated: Regularly update your portfolio with new projects and skills as you gain more experience in data science. This will show that you are actively engaged in the field and continuously improving your skills.
By following these steps, you can create a comprehensive and visually appealing data science portfolio that will impress potential employers and help you stand out in the competitive job market.
๐1
๐ณ ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป & ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐๐
๐ป You donโt need to spend a rupee to master Python!๐
Whether youโre an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l5XXY2
Enjoy Learning โ ๏ธ
๐ป You donโt need to spend a rupee to master Python!๐
Whether youโre an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4l5XXY2
Enjoy Learning โ ๏ธ
๐2
Step-by-Step Roadmap to Learn Data Science in 2025:
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Descriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://t.me/datalemur
React โค๏ธ for more
Step 1: Understand the Role
A data scientist in 2025 is expected to:
Analyze data to extract insights
Build predictive models using ML
Communicate findings to stakeholders
Work with large datasets in cloud environments
Step 2: Master the Prerequisite Skills
A. Programming
Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn
R (optional but helpful for statistical analysis)
SQL: Strong command over data extraction and transformation
B. Math & Stats
Probability, Descriptive & Inferential Statistics
Linear Algebra & Calculus (only what's necessary for ML)
Hypothesis testing
Step 3: Learn Data Handling
Data Cleaning, Preprocessing
Exploratory Data Analysis (EDA)
Feature Engineering
Tools: Python (pandas), Excel, SQL
Step 4: Master Machine Learning
Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost
Unsupervised Learning: K-Means, Hierarchical Clustering, PCA
Deep Learning (optional): Use TensorFlow or PyTorch
Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE
Step 5: Learn Data Visualization & Storytelling
Python (matplotlib, seaborn, plotly)
Power BI / Tableau
Communicating insights clearly is as important as modeling
Step 6: Use Real Datasets & Projects
Work on projects using Kaggle, UCI, or public APIs
Examples:
Customer churn prediction
Sales forecasting
Sentiment analysis
Fraud detection
Step 7: Understand Cloud & MLOps (2025+ Skills)
Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure
MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics
Step 8: Build Portfolio & Resume
Create GitHub repos with well-documented code
Post projects and blogs on Medium or LinkedIn
Prepare a data science-specific resume
Step 9: Apply Smartly
Focus on job roles like: Data Scientist, ML Engineer, Data Analyst โ DS
Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.
Practice data science interviews: case studies, ML concepts, SQL + Python coding
Step 10: Keep Learning & Updating
Follow top newsletters: Data Elixir, Towards Data Science
Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI
Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)
Free Resources to learn Data Science
Kaggle Courses: https://www.kaggle.com/learn
CS50 AI by Harvard: https://cs50.harvard.edu/ai/
Fast.ai: https://course.fast.ai/
Google ML Crash Course: https://developers.google.com/machine-learning/crash-course
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998
Data Science Books: https://t.me/datalemur
React โค๏ธ for more
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
Dreaming of a career in Data Analytics but donโt know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified โ ๏ธ
๐ Python Cheatsheet: Master the Foundations & Beyond
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
Start learning Python โ
โฌ๏ธ Core Python Building Blocks
Basic Commands
โ print() โ Display output
โ input() โ Get user input
โ len() โ Get length of a data structure
โ type() โ Get variable type
โ range() โ Generate a sequence
โ help() โ Get documentation
Data Types
โ int, float, bool, str โ Numbers & text
โ list, tuple, dict, set โ Data collections
Control Structures
โ if / elif / else โ Conditional logic
โ for, while โ Loops
โ break, continue, pass โ Loop control
โฌ๏ธ Advanced Concepts
Functions & Classes
โ def, return, lambda โ Define functions
โ class, init, self โ Object-oriented programming
Modules
โ import, from ... import โ Reuse code
โฌ๏ธ Special Tools
Exception Handling
โ try, except, finally, raise โ Handle errors
File Handling
โ open(), read(), write(), close() โ Manage files
Decorators & Generators
โ @decorator, yield โ Extend or pause functions
List Comprehension
โ [x for x in list if condition] โ Create lists efficiently
Like for more โค๏ธ
๐5