๐ฑ ๐๐ฅ๐๐ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐ ๐ฏ๐ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐๐๐ , ๐จ๐ฑ๐ฎ๐ฐ๐ถ๐๐ & ๐ ๐ผ๐ฟ๐ฒ๐
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
Looking to learn Python from scratchโwithout spending a rupee? ๐ป
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐ฅ๐จโ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3HNeyBQ
Kickstart your careerโ ๏ธ
๐1
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ฐ๐๐๐ฎ๐น๐น๐ ๐จ๐ฝ๐ด๐ฟ๐ฎ๐ฑ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
I failed my first data interview โ and hereโs why:โฌ๏ธ
โ No structured learning
โ No real projects
โ Just random YouTube tutorials and half-read blogs
If this sounds like you, donโt repeat my mistakeโจ๏ธ
Recruiters want proof of skills, not just buzzwords๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ka1ZOl
All The Best ๐
Forwarded from AI Prompts | ChatGPT | Google Gemini | Claude
List of Top 12 Coding Channels on WhatsApp:
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
1. Python Programming:
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
2. Coding Resources:
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
3. Coding Projects:
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
4. Coding Interviews:
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
5. Java Programming:
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
6. Javascript:
https://whatsapp.com/channel/0029VavR9OxLtOjJTXrZNi32
7. Web Development:
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
8. Artificial Intelligence:
https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
9. Data Science:
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
10. Machine Learning:
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. SQL:
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
12. GitHub:
https://whatsapp.com/channel/0029Vawixh9IXnlk7VfY6w43
ENJOY LEARNING ๐๐
๐2
Forwarded from Artificial Intelligence
๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฆ๐ค๐ ๐๐ฎ๐ป ๐๐ฒ ๐๐๐ป! ๐ฐ ๐๐ป๐๐ฒ๐ฟ๐ฎ๐ฐ๐๐ถ๐๐ฒ ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐ ๐ง๐ต๐ฎ๐ ๐๐ฒ๐ฒ๐น ๐๐ถ๐ธ๐ฒ ๐ฎ ๐๐ฎ๐บ๐ฒ๐
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Think SQL is all about dry syntax and boring tutorials? Think again.๐ค
These 4 gamified SQL websites turn learning into an adventure โ from solving murder mysteries to exploring virtual islands, youโll write real SQL queries while cracking clues and completing missions๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4nh6PMv
These platforms make SQL interactive, practical, and funโ ๏ธ
Hey guys,
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
Example:
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
Example:
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
- Fill missing data with a specific value:
- Forward-fill or backfill missing values:
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
- pd.concat(): For concatenating along rows or columns.
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Today, letโs talk about some of the Python questions you might face during a data analyst interview. Below, Iโve compiled the most commonly asked Python questions you should be prepared for in your interviews.
1. Why is Python used in data analysis?
Python is popular for data analysis due to its simplicity, readability, and vast ecosystem of libraries like Pandas, NumPy, Matplotlib, and Scikit-learn. It allows for quick prototyping, data manipulation, and visualization. Moreover, Python integrates seamlessly with other tools like SQL, Excel, and cloud platforms, making it highly versatile for both small-scale analysis and large-scale data engineering.
2. What are the essential libraries used for data analysis in Python?
Some key libraries youโll use frequently are:
- Pandas: For data manipulation and analysis. It provides data structures like DataFrames, which are perfect for handling tabular data.
- NumPy: For numerical operations. It supports arrays and matrices and includes mathematical functions.
- Matplotlib/Seaborn: For data visualization. Matplotlib allows for creating static, interactive, and animated visualizations, while Seaborn makes creating complex plots easier.
- Scikit-learn: For machine learning. It provides tools for data mining and analysis.
3. What is a Python dictionary, and how is it used in data analysis?
A dictionary in Python is an unordered collection of key-value pairs. Itโs extremely useful in data analysis for storing mappings (like labels to corresponding values) or for quick lookups.
Example:
sales = {"January": 12000, "February": 15000, "March": 17000}
print(sales["February"]) # Output: 15000
4. Explain the difference between a list and a tuple in Python.
- List: Mutable, meaning you can modify (add, remove, or change) elements. Itโs written in square brackets
[ ]
.Example:
my_list = [10, 20, 30]
my_list.append(40)
- Tuple: Immutable, meaning once defined, you cannot modify it. Itโs written in parentheses
( )
.Example:
my_tuple = (10, 20, 30)
5. How would you handle missing data in a dataset using Python?
Handling missing data is critical in data analysis, and Pythonโs Pandas library makes it easy. Here are some common methods:
- Drop missing data:
df.dropna()
- Fill missing data with a specific value:
df.fillna(0)
- Forward-fill or backfill missing values:
df.fillna(method='ffill') # Forward-fill
df.fillna(method='bfill') # Backfill
6. How do you merge/join two datasets in Python?
- pd.merge(): For SQL-style joins (inner, outer, left, right).
df_merged = pd.merge(df1, df2, on='common_column', how='inner')
- pd.concat(): For concatenating along rows or columns.
df_concat = pd.concat([df1, df2], axis=1)
7. What is the purpose of lambda functions in Python?
A lambda function is an anonymous, single-line function that can be used for quick, simple operations. They are useful when you need a short, throwaway function.
Example:
add = lambda x, y: x + y
print(add(10, 20)) # Output: 30
Lambdas are often used in data analysis for quick transformations or filtering operations within functions like
map()
or filter()
.If youโre preparing for interviews, focus on writing clean, optimized code and understand how Python fits into the larger data ecosystem.
Here you can find essential Python Interview Resources๐
https://t.me/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐4
Forwarded from Python Projects & Resources
๐๐ฅ๐๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐บ๐ฝ๐ฟ๐ผ๐๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐ธ๐ถ๐น๐น๐๐ฒ๐ ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
โ Artificial Intelligence โ Master AI & Machine Learning
โ Blockchain โ Understand decentralization & smart contracts๐ฐ
โ Cloud Computing โ Learn AWS, Azure&cloud infrastructure โ
โ Web 3.0 โ Explore the future of the Internet &Apps ๐
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4aM1QO0
Enroll For FREE & Get Certified ๐
Master Java programming in 15 days with Free Resources ๐๐
Days 1-3: Getting Started
1. Day 1: Install Java Development Kit (JDK) on your computer and set up your development environment.
2. Day 2: Learn the basics of Java syntax, variables, data types, and how to write a simple "Hello, World!" program.
3. Day 3: Dive into Java's Object-Oriented Programming (OOP) concepts, including classes and objects.
Days 4-6: Control Flow and Data Structures
4. Day 4: Study control flow structures like if statements, loops (for, while), and switch statements.
5. Day 5: Learn about data structures such as arrays and ArrayLists for handling collections of data.
6. Day 6: Explore more advanced data structures like HashMaps and Sets.
Days 7-9: Methods and Functions
7. Day 7: Understand methods and functions in Java, including method parameters and return values.
8. Day 8: Learn about method overloading and overriding, as well as access modifiers.
9. Day 9: Practice creating and using methods in your Java programs.
Days 10-12: Exception Handling and File I/O
10. Day 10: Study exception handling to deal with runtime errors.
11. Day 11: Explore file input/output to read and write data to files.
12. Day 12: Combine exception handling and file I/O in practical applications.
Days 13-15: Advanced Topics and Projects
13. Day 13: Learn about Java's built-in libraries, such as the Collections framework and the java.util package.
14. Day 14: Explore graphical user interfaces (GUI) using Java Swing or JavaFX.
15. Day 15: Work on a Java project to apply what you've learned. Build a simple application or program of your choice.
FREE RESOURCES TO LEARN JAVA ๐๐
Introduction to Programming in Java: https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/
Java Tutorial for complete beginners: https://bit.ly/3MkvQWf
Introduction to Java Programming and Data Structures: https://t.me/programming_guide/573
Project Ideas for Java: https://t.me/Programming_experts/457
Free Website to Practice Java https://www.hackerrank.com/domains/java
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
Days 1-3: Getting Started
1. Day 1: Install Java Development Kit (JDK) on your computer and set up your development environment.
2. Day 2: Learn the basics of Java syntax, variables, data types, and how to write a simple "Hello, World!" program.
3. Day 3: Dive into Java's Object-Oriented Programming (OOP) concepts, including classes and objects.
Days 4-6: Control Flow and Data Structures
4. Day 4: Study control flow structures like if statements, loops (for, while), and switch statements.
5. Day 5: Learn about data structures such as arrays and ArrayLists for handling collections of data.
6. Day 6: Explore more advanced data structures like HashMaps and Sets.
Days 7-9: Methods and Functions
7. Day 7: Understand methods and functions in Java, including method parameters and return values.
8. Day 8: Learn about method overloading and overriding, as well as access modifiers.
9. Day 9: Practice creating and using methods in your Java programs.
Days 10-12: Exception Handling and File I/O
10. Day 10: Study exception handling to deal with runtime errors.
11. Day 11: Explore file input/output to read and write data to files.
12. Day 12: Combine exception handling and file I/O in practical applications.
Days 13-15: Advanced Topics and Projects
13. Day 13: Learn about Java's built-in libraries, such as the Collections framework and the java.util package.
14. Day 14: Explore graphical user interfaces (GUI) using Java Swing or JavaFX.
15. Day 15: Work on a Java project to apply what you've learned. Build a simple application or program of your choice.
FREE RESOURCES TO LEARN JAVA ๐๐
Introduction to Programming in Java: https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/
Java Tutorial for complete beginners: https://bit.ly/3MkvQWf
Introduction to Java Programming and Data Structures: https://t.me/programming_guide/573
Project Ideas for Java: https://t.me/Programming_experts/457
Free Website to Practice Java https://www.hackerrank.com/domains/java
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
Forwarded from Python Projects & Resources
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/40OgK1w
Enroll For FREE & Get Certified ๐
Python Interview Questions โ Part 1
1. What is Python?
Python is a high-level, interpreted programming language known for its readability and wide range of libraries.
2. Is Python statically typed or dynamically typed?
Dynamically typed. You don't need to declare data types explicitly.
3. What is the difference between a list and a tuple?
List is mutable, can be modified.
Tuple is immutable, cannot be changed after creation.
4. What is indentation in Python?
Indentation is used to define blocks of code. Python strictly relies on indentation instead of brackets {}.
5. What is the output of this code?
x = [1, 2, 3]
print(x * 2)
Answer: [1, 2, 3, 1, 2, 3]
6. Write a Python program to check if a number is even or odd.
num = int(input("Enter number: "))
if num % 2 == 0:
print("Even")
else:
print("Odd")
7. What is a Python dictionary?
A collection of key-value pairs. Example:
person = {"name": "Alice", "age": 25}
8. Write a function to return the square of a number.
def square(n):
return n * n
Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
1. What is Python?
Python is a high-level, interpreted programming language known for its readability and wide range of libraries.
2. Is Python statically typed or dynamically typed?
Dynamically typed. You don't need to declare data types explicitly.
3. What is the difference between a list and a tuple?
List is mutable, can be modified.
Tuple is immutable, cannot be changed after creation.
4. What is indentation in Python?
Indentation is used to define blocks of code. Python strictly relies on indentation instead of brackets {}.
5. What is the output of this code?
x = [1, 2, 3]
print(x * 2)
Answer: [1, 2, 3, 1, 2, 3]
6. Write a Python program to check if a number is even or odd.
num = int(input("Enter number: "))
if num % 2 == 0:
print("Even")
else:
print("Odd")
7. What is a Python dictionary?
A collection of key-value pairs. Example:
person = {"name": "Alice", "age": 25}
8. Write a function to return the square of a number.
def square(n):
return n * n
Coding Interviews: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING ๐๐
๐1
๐ ๐ง๐ผ๐ฝ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐ โ ๐๐ฅ๐๐ & ๐ข๐ป๐น๐ถ๐ป๐ฒ๐
Boost your resume with real-world experience from global giants! ๐ผ๐
๐น Deloitte โ https://pdlink.in/4iKcgA4
๐น Accenture โ https://pdlink.in/44pfljI
๐น TATA โ https://pdlink.in/3FyjDgp
๐น BCG โ https://pdlink.in/4lyeRyY
โจ 100% Virtual
๐ Certificate Included
๐ Flexible Timings
๐ Great for Beginners & Students
Apply now and gain an edge in your career! ๐๐
Boost your resume with real-world experience from global giants! ๐ผ๐
๐น Deloitte โ https://pdlink.in/4iKcgA4
๐น Accenture โ https://pdlink.in/44pfljI
๐น TATA โ https://pdlink.in/3FyjDgp
๐น BCG โ https://pdlink.in/4lyeRyY
โจ 100% Virtual
๐ Certificate Included
๐ Flexible Timings
๐ Great for Beginners & Students
Apply now and gain an edge in your career! ๐๐
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
SQL:- https://pdlink.in/4lvR4zF
AWS:- https://pdlink.in/4nriVCH
Cybersecurity:- https://pdlink.in/3T6pg8O
Data Analytics:- https://pdlink.in/43TGwnM
Enroll for FREE & Get Certified ๐
Learn Fundamental Skills with Free Online Courses & Earn Certificates
SQL:- https://pdlink.in/4lvR4zF
AWS:- https://pdlink.in/4nriVCH
Cybersecurity:- https://pdlink.in/3T6pg8O
Data Analytics:- https://pdlink.in/43TGwnM
Enroll for FREE & Get Certified ๐
Interview guide for Data Analyst Role
When interviewing for a Data Analyst role as a fresher, youโll likely encounter questions that focus on your understanding of data analysis concepts, technical skills, and problem-solving abilities. Hereโs a comprehensive list of commonly asked interview questions:
1. General and Behavioral Questions
โข Tell me about yourself.
โข Why do you want to become a Data Analyst?
โข What do you know about our company and why do you want to work here?
โข Describe a time when you solved a problem using data.
โข How do you prioritize tasks and manage deadlines?
โข Tell me about a time when you worked in a team to complete a project.
2. Technical Questions
โข What are the different types of joins in SQL? (Expect variations of SQL questions)
โข How would you handle missing or inconsistent data?
โข What is normalization? Why is it important?
โข Explain the difference between primary keys and foreign keys in a database.
โข What are the most common data types in SQL?
โข How do you perform data cleaning in Excel?
3. Analytical Skills and Problem-Solving
โข How would you find outliers in a dataset?
โข How would you approach analyzing a dataset with 1 million rows?
โข If given two datasets, how would you combine them?
โข What steps would you take if your results didnโt match stakeholdersโ expectations?
โข How would you identify trends or patterns in a dataset?
4. Excel-Related Questions
โข What are pivot tables and how do you use them?
โข Explain VLOOKUP and HLOOKUP.
โข How would you handle large datasets in Excel?
โข What is the use of conditional formatting?
โข How would you create a dashboard in Excel?
โข How can you create a custom formula in Excel?
5. SQL Questions
โข Write a SQL query to find the second highest salary in a table.
โข What is the difference between WHERE and HAVING clauses?
โข How would you optimize a slow-running query?
โข What is the difference between UNION and UNION ALL?
โข What is a subquery, and when would you use it?
6. Statistics and Data Analysis
โข Explain the difference between mean, median, and mode.
โข What is standard deviation, and why is it important?
โข What is regression analysis? Can you explain linear regression?
โข What is correlation, and how is it different from causation?
โข What are some key metrics you would track for a marketing campaign?
7. Data Visualization and Tools
โข What tools have you used for data visualization?
โข Explain a situation where you used charts to tell a story.
โข What is your experience with tools like Tableau or Power BI?
โข How would you decide which chart type to use for visualizing data?
โข Have you ever created a dashboard? If yes, what were the key features?
8. Python/R (If mentioned on your resume)
โข What libraries do you use in Python for data analysis?
โข How would you import a dataset and perform basic analysis in Python?
โข What are some common data manipulation functions in pandas?
โข How do you handle missing values in Python?
9. Scenario-Based Questions
โข Imagine you are given a dataset of customer purchases; how would you segment the customers?
โข You are given sales data for the past five years. What steps would you take to forecast the next yearโs sales?
โข If you find conflicting data in a report, how would you handle the situation?
โข Describe a project where you identified key insights using data.
10. Aptitude or Logical Questions
โข Some companies also include questions testing your quantitative aptitude, logical reasoning, and pattern recognition to gauge problem-solving skills.
Tips to Prepare:
1. Strengthen your Basics: Brush up on SQL, Excel, and statistical concepts.
2. Mock Interviews: Practice explaining your thought process for data problems.
3. Projects: Be ready to discuss any projects or internships youโve done.
4. Stay Current: Read about trends in data analysis and business intelligence.
Hope this helps you ๐
When interviewing for a Data Analyst role as a fresher, youโll likely encounter questions that focus on your understanding of data analysis concepts, technical skills, and problem-solving abilities. Hereโs a comprehensive list of commonly asked interview questions:
1. General and Behavioral Questions
โข Tell me about yourself.
โข Why do you want to become a Data Analyst?
โข What do you know about our company and why do you want to work here?
โข Describe a time when you solved a problem using data.
โข How do you prioritize tasks and manage deadlines?
โข Tell me about a time when you worked in a team to complete a project.
2. Technical Questions
โข What are the different types of joins in SQL? (Expect variations of SQL questions)
โข How would you handle missing or inconsistent data?
โข What is normalization? Why is it important?
โข Explain the difference between primary keys and foreign keys in a database.
โข What are the most common data types in SQL?
โข How do you perform data cleaning in Excel?
3. Analytical Skills and Problem-Solving
โข How would you find outliers in a dataset?
โข How would you approach analyzing a dataset with 1 million rows?
โข If given two datasets, how would you combine them?
โข What steps would you take if your results didnโt match stakeholdersโ expectations?
โข How would you identify trends or patterns in a dataset?
4. Excel-Related Questions
โข What are pivot tables and how do you use them?
โข Explain VLOOKUP and HLOOKUP.
โข How would you handle large datasets in Excel?
โข What is the use of conditional formatting?
โข How would you create a dashboard in Excel?
โข How can you create a custom formula in Excel?
5. SQL Questions
โข Write a SQL query to find the second highest salary in a table.
โข What is the difference between WHERE and HAVING clauses?
โข How would you optimize a slow-running query?
โข What is the difference between UNION and UNION ALL?
โข What is a subquery, and when would you use it?
6. Statistics and Data Analysis
โข Explain the difference between mean, median, and mode.
โข What is standard deviation, and why is it important?
โข What is regression analysis? Can you explain linear regression?
โข What is correlation, and how is it different from causation?
โข What are some key metrics you would track for a marketing campaign?
7. Data Visualization and Tools
โข What tools have you used for data visualization?
โข Explain a situation where you used charts to tell a story.
โข What is your experience with tools like Tableau or Power BI?
โข How would you decide which chart type to use for visualizing data?
โข Have you ever created a dashboard? If yes, what were the key features?
8. Python/R (If mentioned on your resume)
โข What libraries do you use in Python for data analysis?
โข How would you import a dataset and perform basic analysis in Python?
โข What are some common data manipulation functions in pandas?
โข How do you handle missing values in Python?
9. Scenario-Based Questions
โข Imagine you are given a dataset of customer purchases; how would you segment the customers?
โข You are given sales data for the past five years. What steps would you take to forecast the next yearโs sales?
โข If you find conflicting data in a report, how would you handle the situation?
โข Describe a project where you identified key insights using data.
10. Aptitude or Logical Questions
โข Some companies also include questions testing your quantitative aptitude, logical reasoning, and pattern recognition to gauge problem-solving skills.
Tips to Prepare:
1. Strengthen your Basics: Brush up on SQL, Excel, and statistical concepts.
2. Mock Interviews: Practice explaining your thought process for data problems.
3. Projects: Be ready to discuss any projects or internships youโve done.
4. Stay Current: Read about trends in data analysis and business intelligence.
Hope this helps you ๐
Forwarded from Artificial Intelligence
๐ฆ๐๐ฎ๐ฟ๐ ๐ฎ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐๐ฎ๐๐ฎ ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต (๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฃ๐ฎ๐๐ต)๐
Dreaming of a career in data or tech but donโt know where to begin?๐จโ๐ป๐
Donโt worry โ this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! ๐ป๐ผ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45HFUDh
Enjoy Learning โ ๏ธ
Dreaming of a career in data or tech but donโt know where to begin?๐จโ๐ป๐
Donโt worry โ this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! ๐ป๐ผ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45HFUDh
Enjoy Learning โ ๏ธ
Don't Confuse to learn Python.
Learn This Concept to be proficient in Python.
๐๐ฎ๐๐ถ๐ฐ๐ ๐ผ๐ณ ๐ฃ๐๐๐ต๐ผ๐ป:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages
๐ข๐ฏ๐ท๐ฒ๐ฐ๐-๐ข๐ฟ๐ถ๐ฒ๐ป๐๐ฒ๐ฑ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
๐ฃ๐๐๐ต๐ผ๐ป ๐๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ถ๐ฒ๐:
- Pandas
- Numpy
๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ๐๐ฟ๐ฎ๐บ๐ฒ๐:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables
๐๐ฎ๐๐ฎ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization
๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐ง๐ผ๐ฝ๐ถ๐ฐ๐:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas
๐๐ฎ๐๐ฎ ๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Lists
- Tuples
- Dictionaries
- Sets
๐๐ถ๐น๐ฒ ๐๐ฎ๐ป๐ฑ๐น๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files
๐ก๐๐บ๐ฝ๐:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays
๐ก๐๐บ๐ฃ๐ ๐๐ฟ๐ฟ๐ฎ๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป๐:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ถ๐ป ๐ก๐๐บ๐ฃ๐:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions
๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐๐ต ๐ก๐๐บ๐ฃ๐:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
#Python
Learn This Concept to be proficient in Python.
๐๐ฎ๐๐ถ๐ฐ๐ ๐ผ๐ณ ๐ฃ๐๐๐ต๐ผ๐ป:
- Python Syntax
- Data Types
- Variables
- Operators
- Control Structures:
if-elif-else
Loops
Break and Continue
try-except block
- Functions
- Modules and Packages
๐ข๐ฏ๐ท๐ฒ๐ฐ๐-๐ข๐ฟ๐ถ๐ฒ๐ป๐๐ฒ๐ฑ ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Classes and Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
๐ฃ๐๐๐ต๐ผ๐ป ๐๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐ถ๐ฒ๐:
- Pandas
- Numpy
๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐:
- What is Pandas?
- Installing Pandas
- Importing Pandas
- Pandas Data Structures (Series, DataFrame, Index)
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ๐๐ฟ๐ฎ๐บ๐ฒ๐:
- Creating DataFrames
- Accessing Data in DataFrames
- Filtering and Selecting Data
- Adding and Removing Columns
- Merging and Joining DataFrames
- Grouping and Aggregating Data
- Pivot Tables
๐๐ฎ๐๐ฎ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฎ๐๐ถ๐ผ๐ป:
- Handling Missing Values
- Handling Duplicates
- Data Formatting
- Data Transformation
- Data Normalization
๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ๐ฑ ๐ง๐ผ๐ฝ๐ถ๐ฐ๐:
- Handling Large Datasets with Dask
- Handling Categorical Data with Pandas
- Handling Text Data with Pandas
- Using Pandas with Scikit-learn
- Performance Optimization with Pandas
๐๐ฎ๐๐ฎ ๐ฆ๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ๐ ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Lists
- Tuples
- Dictionaries
- Sets
๐๐ถ๐น๐ฒ ๐๐ฎ๐ป๐ฑ๐น๐ถ๐ป๐ด ๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป:
- Reading and Writing Text Files
- Reading and Writing Binary Files
- Working with CSV Files
- Working with JSON Files
๐ก๐๐บ๐ฝ๐:
- What is NumPy?
- Installing NumPy
- Importing NumPy
- NumPy Arrays
๐ก๐๐บ๐ฃ๐ ๐๐ฟ๐ฟ๐ฎ๐ ๐ข๐ฝ๐ฒ๐ฟ๐ฎ๐๐ถ๐ผ๐ป๐:
- Creating Arrays
- Accessing Array Elements
- Slicing and Indexing
- Reshaping Arrays
- Combining Arrays
- Splitting Arrays
- Arithmetic Operations
- Broadcasting
๐ช๐ผ๐ฟ๐ธ๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐๐ฎ๐๐ฎ ๐ถ๐ป ๐ก๐๐บ๐ฃ๐:
- Reading and Writing Data with NumPy
- Filtering and Sorting Data
- Data Manipulation with NumPy
- Interpolation
- Fourier Transforms
- Window Functions
๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐๐ต ๐ก๐๐บ๐ฃ๐:
- Vectorization
- Memory Management
- Multithreading and Multiprocessing
- Parallel Computing
I have curated the best resources to learn Python ๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
#Python
๐2
๐๐๐ฆ๐๐ข ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
- Data Analytics
- Data Science
- Python
- Javascript
- Cybersecurity
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified๐
- Data Analytics
- Data Science
- Python
- Javascript
- Cybersecurity
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified๐