Forwarded from Python Projects & Resources
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ,๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ,๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐๐๐ถ๐ฑ๐ฒ๐
Roadmap:- https://pdlink.in/41c1Kei
Certifications:- https://pdlink.in/3Fq7E4p
Projects:- https://pdlink.in/3ZkXetO
Interview Q/A :- https://pdlink.in/4jLOJ2a
Enroll For FREE & Become a Certified Data Analyst In 2025๐
Roadmap:- https://pdlink.in/41c1Kei
Certifications:- https://pdlink.in/3Fq7E4p
Projects:- https://pdlink.in/3ZkXetO
Interview Q/A :- https://pdlink.in/4jLOJ2a
Enroll For FREE & Become a Certified Data Analyst In 2025๐
If you want to get a job as a machine learning engineer, donโt start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
๐1
Forwarded from Python Projects & Resources
๐๐ป๐ฑ๐๐๐๐ฟ๐ ๐๐ฝ๐ฝ๐ฟ๐ผ๐๐ฒ๐ฑ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐
Whether youโre interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, thereโs something here for everyone.
โ 100% Free Courses
โ Govt. Incentives on Completion
โ Self-paced Learning
โ Certificates to Showcase on LinkedIn & Resume
โ Mock Assessments to Test Your Skills
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/447coEk
Enroll for FREE & Get Certified ๐
Whether youโre interested in AI, Data Analytics, Cybersecurity, or Cloud Computing, thereโs something here for everyone.
โ 100% Free Courses
โ Govt. Incentives on Completion
โ Self-paced Learning
โ Certificates to Showcase on LinkedIn & Resume
โ Mock Assessments to Test Your Skills
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/447coEk
Enroll for FREE & Get Certified ๐
If you want to get a job as a machine learning engineer, donโt start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Forwarded from Artificial Intelligence
๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ & ๐๐ฒ๐ฎ๐ฑ๐ถ๐ป๐ด ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Harward :- https://pdlink.in/4kmYOn1
MIT :- https://pdlink.in/45cvR95
HP :- https://pdlink.in/45ci02k
Google :- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/441GCKF
Standford :- https://pdlink.in/3ThPwNw
IIM :- https://pdlink.in/4nfXDrV
Enroll for FREE & Get Certified ๐
Harward :- https://pdlink.in/4kmYOn1
MIT :- https://pdlink.in/45cvR95
HP :- https://pdlink.in/45ci02k
Google :- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/441GCKF
Standford :- https://pdlink.in/3ThPwNw
IIM :- https://pdlink.in/4nfXDrV
Enroll for FREE & Get Certified ๐
Forwarded from Artificial Intelligence
๐๐ข๐๐ซ๐จ๐ฌ๐จ๐๐ญ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ!๐๐ป
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
Python from scratch
by University of Waterloo
0. Introduction
1. First steps
2. Built-in functions
3. Storing and using information
4. Creating functions
5. Booleans
6. Branching
7. Building better programs
8. Iteration using while
9. Storing elements in a sequence
10. Iteration using for
11. Bundling information into objects
12. Structuring data
13. Recursion
https://open.cs.uwaterloo.ca/python-from-scratch/
#python
by University of Waterloo
0. Introduction
1. First steps
2. Built-in functions
3. Storing and using information
4. Creating functions
5. Booleans
6. Branching
7. Building better programs
8. Iteration using while
9. Storing elements in a sequence
10. Iteration using for
11. Bundling information into objects
12. Structuring data
13. Recursion
https://open.cs.uwaterloo.ca/python-from-scratch/
#python
๐1
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฒ ๐๐ & ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ๐๐
Want to explore AI & Machine Learning but donโt know where to start โ or donโt want to spend โนโนโน on it?๐จโ๐ป
Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/401SWry
This 100% FREE course is designed just for beginners โ whether youโre a student, fresher, or career switcherโ ๏ธ
Want to explore AI & Machine Learning but donโt know where to start โ or donโt want to spend โนโนโน on it?๐จโ๐ป
Learn the foundations of AI, machine learning basics, data handling, and real-world use cases in just a few hours.๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/401SWry
This 100% FREE course is designed just for beginners โ whether youโre a student, fresher, or career switcherโ ๏ธ
๐1
๐ Predictive Modeling for Future Stock Prices in Python: A Step-by-Step Guide
The process of building a stock price prediction model using Python.
1. Import required modules
2. Obtaining historical data on stock prices
3. Selection of features.
4. Definition of features and target variable
5. Preparing data for training
6. Separation of data into training and test sets
7. Building and training the model
8. Making forecasts
9. Trading Strategy Testing
The process of building a stock price prediction model using Python.
1. Import required modules
2. Obtaining historical data on stock prices
3. Selection of features.
4. Definition of features and target variable
5. Preparing data for training
6. Separation of data into training and test sets
7. Building and training the model
8. Making forecasts
9. Trading Strategy Testing
๐2
Forwarded from Python Projects & Resources
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ถ๐ป๐ด ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ? ๐๐ฒ๐ฟ๐ฒโ๐ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐๐ฒ๐ฝ-๐ฏ๐-๐ฆ๐๐ฒ๐ฝ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ฟ๐ฎ๐ฐ๐ธ ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐-๐๐ฎ๐๐ฒ๐ฑ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐!๐
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
Landing your dream tech job takes more than just writing code โ it requires structured preparation across key areas๐จโ๐ป
This roadmap will guide you from zero to offer letter! ๐ผ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GdfTS2
This plan works if you stay consistent๐ชโ ๏ธ
๐1