Разъяснивший Python
8.16K subscribers
2.44K photos
40 videos
30 files
2.29K links
Твой проводник в омут Python'а

Ссылка: @Portal_v_IT

Сотрудничество: @oleginc, @tatiana_inc

Канал на бирже: https://telega.in/c/python_pssss
Download Telegram
Полезные библиотеки Python

Blackbird — мощный инструмент OSINT для поиска аккаунтов по всему интернету.

Ищете эффективный способ обнаружить учетные записи пользователя по нику или email?
Blackbird — продвинутый инструмент для OSINT-исследований, позволяющий быстро находить профили на более чем 600 платформах.

GitHub/Инструкция

Разъяснивший Python
any

any возвращает True, если хотя бы один элемент итерируемого объекта является истинным. Это полезно для быстрых проверок условий в коллекциях.

Разъяснивший Python
👍1
numpy.where

Функция numpy.where используется для поиска элементов в массиве, которые соответствуют определённому условию. Она возвращает индексы этих элементов или позволяет заменять их на другие значения. Благодаря данной статье ты узнаешь, как пользоваться numpy.where.

👉Читать статью

Разъяснивший Python
🔥21👎1
all

all проверяет все элементы итерируемого объекта и возвращает True, только если все элементы — истинные (truthy). Если хотя бы один элемент ложный (False, 0, None, пустая строка или список) — результат будет False.

Это полезно для проверки условий сразу на всех элементах без написания циклов.

Разъяснивший Python
Как проверить, содержится ли подстрока в строке?

Новички нередко используют громоздкие конструкции или циклы, чтобы проверить, встречается ли слово или символ в строке. Но Python позволяет делать это очень просто — с помощью ключевого слова in.

Оператор in возвращает True, если подстрока найдена в строке, и False — если нет. Это лаконично, читаемо и Python-идиоматично.

Итог:
in — простой способ проверить наличие подстроки.
Удобно использовать в условиях (if) и циклах.
Повышает читаемость кода и сокращает количество строк.

Разъяснивший Python
NumPy: concatenate

Функция numpy.concatenate() используется для объединения массивов вдоль существующих осей. Это позволяет объединять несколько массивов NumPy в один массив. Мы передаем последовательность массивов, которые хотим объединить, в функцию concatenate() вместе с осью. Если ось не передана явно, она принимается за 0.

Разъяснивший Python
Как округлить число до нужного знака после запятой?

Новички часто пытаются округлять числа вручную или с помощью форматирования строк. Однако в Python есть встроенная функция round(), которая делает это просто и понятно.

Функция round(число, знаки) округляет число до указанного количества знаков после запятой. Если не указывать второй аргумент — округлит до целого. Удобно для вывода результатов вычислений, цен или процентов. 🧮

Итог:
round(x, n) — округление числа x до n знаков после запятой.
Без второго аргумента округляет до целого.
Полезно при работе с деньгами, метриками и графиками.

Разъяснивший Python
Полезные библиотеки Python

Newspaper4k — мощная библиотека на Python для парсинга и анализа новостных статей. Это обновленный форк популярной Newspaper3k, дополненный новыми функциями и поддержкой более 40 языков.

GitHub/Инструкция

Разъяснивший Python
👍1
str.zfill

str.zfill дополняет строку нулями слева до заданной длины. Это полезно для форматирования чисел с фиксированной шириной, например, в номерах счетов или индексах.

Разъяснивший Python
Ловушка с аргументами *args и **kwargs без передачи дальше

В Python *args и **kwargs часто используются для гибкости, но ошибка — принимать их и не передавать дальше в базовые классы или функции. Это «глотает» параметры и может ломать поведение программы.

Всегда передавайте *args и **kwargs, если не уверены, что они вам не нужны.

Разъяснивший Python
Как замерить время выполнения кода в Python?

Когда нужно понять, насколько быстро работает фрагмент кода, новички часто используют сторонние инструменты или пробуют измерять время "на глаз". Но в Python есть простой и встроенный способ — модуль time.

С помощью time.time() можно зафиксировать время до и после выполнения кода, а затем вычесть одно из другого. Это особенно полезно при оптимизации производительности.

Итог:
Используем time.time() для измерения скорости.
Удобно для профилирования и отладки.
Легко встроить в любой проект.

Разъяснивший Python
👎1
NumPy, часть 2: базовые операции над массивами

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

Для этого, естественно, массивы должны быть одинаковых размеров.

Разъяснивший Python
ElasticNet

Минус Lasso в том, что если признаки сильно скоррелированы между собой, она может случайно “выбрать” только один из них и проигнорировать остальные, даже если они тоже информативны. В таких случаях часто используют ElasticNet — это гибрид L1 и L2.

Параметр l1_ratio регулирует баланс между L1 и L2. 0.0 — чистый Ridge. 1.0 — чистый Lasso. 0.5 — пополам.

Разъяснивший Python
Forwarded from The Экономист
⚡️ Разыгрываем сразу 3 новеньких iPhone 16!

Отличный вариант получить свежайшие гаджеты просто за то, что читаете нас! Для участия нужно:

1. Быть подписанным на The Экономист, Москоубизнес и Доллар по тридцать.
2. Нажать «Участвую!» под этим постом.

Итоги подведём 25 апреля в 18:00 случайным образом при помощи бота. Девайсы за свой счёт застрахуем и отправим победителям в любую точку мира. Всем удачи!
NumPy, часть 4: linalg

Теперь же мы приступим к более серьёзным вещам, которые есть в NumPy. Первый на очереди у нас модуль numpy.linalg, позволяющий делать многие операции из линейной алгебры.

Массивы большей размерности в большинстве функций linalg интерпретируются как набор из нескольких массивов нужной размерности. Таким образом, можно одним вызовом функции проделывать операции над несколькими объектами.

Разъяснивший Python
itertools.starmap

itertools.starmap применяет функцию к элементам итерируемого объекта, распаковывая аргументы из кортежей. Это полезно для операций с несколькими аргументами без лямбд и циклов.

Разъяснивший Python
Как элегантно обрабатывать ошибки в Python?

При написании кода часто возникают ситуации, когда что-то может пойти не так: файл не найден, данные невалидны или пользователь ввёл что-то не то. Новички часто боятся ошибок или пишут громоздкие конструкции, но Python предлагает удобный способ — блок try-except.

С помощью try-except можно перехватить исключения и аккуратно обработать их без аварийного завершения программы. Это улучшает стабильность кода и делает поведение более предсказуемым.

Итог:
try-except позволяет перехватывать ошибки.
Повышает надёжность и стабильность кода.
Удобно для пользовательского ввода, файлов, сетевых операций и др.

Разъяснивший Python
importlib.util.find_spec

importlib.util.find_spec позволяет узнать, можно ли импортировать модуль, не загружая его. Это полезно для проверки наличия зависимостей, динамической загрузки и построения систем плагинов.

Разъяснивший Python
Как присвоить несколько переменных в одну строку?

Иногда нужно сразу задать значения нескольким переменным. Новички делают это в несколько строк, что выглядит громоздко. Но Python поддерживает удобную конструкцию множественного присваивания — коротко, читаемо и эффективно!

С помощью этой фичи можно сразу задать значения, поменять переменные местами или распаковать кортеж — всё в одной строке.

Итог:
Множественное присваивание упрощает код.
Позволяет присваивать значения сразу нескольким переменным.
Удобно для обмена значениями и распаковки структур.

Разъяснивший Python