Модуль pickle
В этом примере мы используем модуль pickle для сериализации объекта data (словарь) в байтовую строку с помощью pickle.dumps. Затем мы десериализуем байтовую строку обратно в объект с помощью pickle.loads и получаем исходный словарь.
Разъяснивший Python
В этом примере мы используем модуль pickle для сериализации объекта data (словарь) в байтовую строку с помощью pickle.dumps. Затем мы десериализуем байтовую строку обратно в объект с помощью pickle.loads и получаем исходный словарь.
Разъяснивший Python
Без всяких обещалок.
Но вот факт: подписчик тупо повторил за чуваком из телеги.
Один вечер. Одна сделка. 37 500₽ вывел.
Это не “стань трейдером”. Это просто “вот ссылка — нажми туда же”.
Работает тупо потому, что ты ничего не выдумываешь.
Канал пока открыт. Можешь зайти и сам всё увидеть: https://t.me/+I9D4ChmbVyhkNjRi
Но вот факт: подписчик тупо повторил за чуваком из телеги.
Один вечер. Одна сделка. 37 500₽ вывел.
Это не “стань трейдером”. Это просто “вот ссылка — нажми туда же”.
Работает тупо потому, что ты ничего не выдумываешь.
Канал пока открыт. Можешь зайти и сам всё увидеть: https://t.me/+I9D4ChmbVyhkNjRi
🥱3💩2
Модуль asyncio для асинхронной работы с сетью и вводом-выводом
В этом примере мы используем модуль asyncio для асинхронного выполнения трех задач, которые имитируют запросы к разным URL-адресам. Мы определяем асинхронную функцию fetch_data, которая ожидает выполнения ввода-вывода (в данном случае, ожидание 2 секунды с помощью await asyncio.sleep(2)). Затем мы используем asyncio.gather для параллельного выполнения всех трех задач в функции main.
Разъяснивший Python
В этом примере мы используем модуль asyncio для асинхронного выполнения трех задач, которые имитируют запросы к разным URL-адресам. Мы определяем асинхронную функцию fetch_data, которая ожидает выполнения ввода-вывода (в данном случае, ожидание 2 секунды с помощью await asyncio.sleep(2)). Затем мы используем asyncio.gather для параллельного выполнения всех трех задач в функции main.
Разъяснивший Python
Асинхронные библиотеки, такие как aiohttp, для эффективной работы с сетью в асинхронном режиме
В этом примере мы используем асинхронную библиотеку aiohttp для выполнения асинхронных запросов к разным URL-адресам и получения данных в формате JSON. Мы определяем асинхронную функцию fetch_data, которая использует aiohttp.ClientSession() для создания сессии и session.get(url) для выполнения асинхронного GET-запроса. Затем мы используем await response.json() для получения данных из ответа в формате JSON.
Разъяснивший Python
В этом примере мы используем асинхронную библиотеку aiohttp для выполнения асинхронных запросов к разным URL-адресам и получения данных в формате JSON. Мы определяем асинхронную функцию fetch_data, которая использует aiohttp.ClientSession() для создания сессии и session.get(url) для выполнения асинхронного GET-запроса. Затем мы используем await response.json() для получения данных из ответа в формате JSON.
Разъяснивший Python