🔥 Бесплатный интенсив по ChatGPT и созданию НЕЙРОСТРУДНИКОВ без опыта программирования🔥
Вы узнаете, как использовать ChatGPT в профессиональных целях, создавать нейросотрудников на заказ и зарабатывать на ИИ от 150.000р в месяц.
Простое понимание основ, без сложного кода!
Что будет на интенсиве?
🧬 Теория: как создаются нейро-сотрудники с GPT на Python
🧬 Практика: мы создадим нейро-консультанта, нейро-HR, нейро-маркетолога и др.
Интенсив - максимально простой и доступный, без какого-либо сложного программирования.
Ведущий интенсива - Senior AI-разработчик нейросетей с 2003 года и основатель Университета искусственного интеллекта - Дмитрий Романов.
🤖Присоединяйтесь к нашему бесплатному интенсиву и разберитесь в этой увлекательной теме с нами!
Вы узнаете, как использовать ChatGPT в профессиональных целях, создавать нейросотрудников на заказ и зарабатывать на ИИ от 150.000р в месяц.
Простое понимание основ, без сложного кода!
Что будет на интенсиве?
🧬 Теория: как создаются нейро-сотрудники с GPT на Python
🧬 Практика: мы создадим нейро-консультанта, нейро-HR, нейро-маркетолога и др.
Интенсив - максимально простой и доступный, без какого-либо сложного программирования.
Ведущий интенсива - Senior AI-разработчик нейросетей с 2003 года и основатель Университета искусственного интеллекта - Дмитрий Романов.
🤖Присоединяйтесь к нашему бесплатному интенсиву и разберитесь в этой увлекательной теме с нами!
👎2😐2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
Когда нужно сравнить скорость выполнения задачи с использованием Python и ручного подхода, полезно измерять время выполнения обеих стратегий. Ниже приведен пример, как можно сравнить время выполнения функции, которая суммирует числа от 1 до n с помощью Python и с использованием ручного метода.
import time
# Ручной подход
def manual_sum(n):
total = 0
for i in range(1, n + 1):
total += i
return total
# Питон-метод
def python_sum(n):
return sum(range(1, n + 1))
# Сравнение производительности
n = 1000000
start_time = time.time()
manual_result = manual_sum(n)
manual_time = time.time() - start_time
start_time = time.time()
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Forwarded from Machinelearning
PaddlePaddle обновили свою линейку PaddleOCR-VL, выпустив PaddleOCR-VL-1.5 - компактную VLM на 0.9 млрд. параметров на базе ERNIE-4.5-0.3B-Paddle. Несмотря на скромный размер, в задачах разбора документов она показывает SOTA-результаты.
На тесте OmniDocBench v1.5 модель выбила 94.5% точности, обойдя не только прошлую версию, но и более тяжелых конкурентов.
Фишка обновления - упор на полевые условия. Модель специально учили работать с плохими исходниками: кривыми сканами, бликами от мониторов и мятыми страницами.
Попутно сделали бенчмарк Real5-OmniDocBench, который гоняет модели по 5 сценариям: сканирование, перекосы, деформация листа, фото с экрана и плохое освещение.
Модель работает с
transformers, дружит с Flash Attention 2 и, само собой, поддерживается PaddlePaddle 3.2.1.Если нужно быстро поднять сервис - есть готовый Docker-образ.
Если нужен полноценный постраничный парсинг всего документа, лучше использовать официальный пакет PaddleOCR. Реализация через transformers пока ограничена только распознаванием отдельных элементов и споттингом.
В пайплайн встроили логику препроцессинга. Если картинка меньше 1500 пикселей, она автоматом апскейлится фильтром Lanczos. При этом есть потолок в 1.6 млн. пикселей для споттинга, это чтобы не перегружать память GPU и сохранить читаемость мелкого шрифта.
@ai_machinelearning_big_data
#AI #ML #VL #OCR #PaddleOCR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1🔥1