Python_BE1
9 subscribers
748 photos
252 videos
7 files
672 links
Канал по Python, полезный и интересный контент для всех уровней.
По вопросам сотрудничества @cyberJohnny
Download Telegram
🖥 Watchdog — это библиотека, специализирующаяся на отслеживании изменений в файловой системе, но в стильном дизайне.

Инструмент даёт возможность фиксировать любые операции с файлами и директориями (создание, удаление, модификация, перемещение) и поддерживает работу в средах Linux, macOS и Windows

Библиотека будет особенно полезна в таких случаях, как:
автоматический перезапуск серверов при обновлениях файлов
обработка вновь загружаемых файлов в заданную директорию
синхронизация содержимого папок
создание механизмов резервного копирования, оперативно реагирующих на изменения

https://github.com/gorakhargosh/watchdog

https://python-watchdog.readthedocs.io/en/stable/quickstart.html
@python_be1
🦙 Встречайте, дамы и господа, LLaMA 4: новые мультимодальные MoE модели!

Llama 4 Omni разработана для понимания и обработки информации модальностей, а не только текста.

Доступна в 3х вариантах: Llama 4 Scout (https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md) и Llama 4 Maverick (https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md) и анонсированный Llama 4 Behemoth. (https://ai.meta.com/blog/llama-4-multimodal-intelligence/)

Llama 4 Scout (109B) контекстное окно размером 10 М, 17B активных параметров · 16 эксперто , 109B общих параметров.

Llama 4 Maverick (400B) 17 млрд активных параметров ,128 экспертов, 400 млрд общих параметров · Длина контекста более 1 млн

У зверюги бегемота (еще тренируется) суммарное количество 2T!!! 16 экспертов, 288B активных параметров. Служит в качестве модели для обучения по методу совместной дистилляции Maverick.

Сейчас выпущены только Scout и Maverick, Кот-бегемот еще обучается.

🟡 Model Card (https://www.llama.com/docs/model-cards-and-prompt-formats/llama4_omni/)
🟡 Веса (https://huggingface.co/meta-llama)
🟡 Релиз (https://www.llama.com/llama4/)
@python_be1
Что будет, если передать в качестве индекса для ice_cream_flavors более короткий индекс days_of_week?
@python_be1
🖥 DeepGit: Repo Discovery — это открытый AI-инструмент, который помогает находить полезные репозитории на GitHub с помощью семантического поиска.

Он основан на системе LangGraph, использует анализ кода, документации и сигналов из сообщества, чтобы отфильтровывать малоизвестные, но перспективные проекты.

Ключевые возможности:
Семантическая проверка: ищет не просто по ключевым словам, а «понимает» содержание.
Многогранный анализ: учитывает не только код, но и документацию, активность и отзывы сообщества.
GitHub-интеграция: фокусируется на данном экосистемном источнике, упрощая отбор качественных проектов.

🖥 GitHub: https://github.com/zamalali/DeepGit
@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
Newspaper4k — мощная библиотека на Python для парсинга и анализа новостных статей. Это обновленный форк популярной Newspaper3k, дополненный новыми функциями и поддержкой более 40 языков.

https://github.com/AndyTheFactory/newspaper4k
@python_be1
🕊️ Namsor - это ИИ для анализа имен собственных с лингвистическим интеллектом. Причем это не просто классификатор, а инструмент с глубоким пониманием культурных и лингвистических контекстов.

Проект удивляет точностью: он различает, является ли "Mercedes фамилией человека, названием города или автомобильным брендом, учитывая страну происхождения.

Технология особенно востребована в CRM-системах, соцсетях и базах данных, где критична корректная интерпретация имен.

🔗 Ссылка - *клик* (https://namsor.app/)
@python_be1
Что можно увидеть в sys.path в Python 3.X?

@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 reloading: перезагрузка кода без потери состояния

reloading — это удобный инструмент для Python, который позволяет автоматически перезагружать тело цикла или функцию из исходного кода на каждой итерации, не теряя состояние.

🔹 Когда полезно?

— При обучении нейросетей, когда нужно изменять код на лету без остановки процесса.
— Для добавления логов, сохранения модели, изменения статистики во время работы.
— В других сценариях, где требуется динамическое обновление кода.

@python_be1
🐍 Задача по Python: Замыкания и области видимости

Что выведет следующий код?

Варианты ответа:
A)7 8
B) 5 5
C) 6 6
D) Ошибка выполнения

---

Правильный ответ:
Почему:
Функция outer создаёт замыкание. Переменная x сохраняется между вызовами f, потому что inner — замыкает x и изменяет её с помощью nonlocal. Это классический пример использования замыканий в Python.

@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 STUMPY — мощная библиотека Python для анализа временных рядов

— pip install stumpy

STUMPY — это масштабируемая библиотека для анализа временных рядов, которая позволяет решать многие задачи анализа временных рядов, вот некоторые из них:

— обнаружение паттернов

— обнаружение аномалий/выбросов

— обобщение и аппроксимация данных временных рядов

https://github.com/TDAmeritrade/stumpy

@python_be1
Строковый метод translate позволяет заменять (или удалять) несколько символов строки за один проход. (Похоже на множественные вызовы метода replace.)

import string

s = "Hello, world!"
print(s.translate(str.maketrans("", "", string.punctuation)))
# Hello world

Строковый метод translate ожидает «таблицу перевода», которую мы создаем с помощью вспомогательного метода класса maketrans.

Третий аргумент (string.punctuation в примере) — это строка символов, которые мы хотим удалить.

Значение string.punctuation (на которое указывает стрелка):
!'#$%&\'()*+,-./:;<=>?@[\\]^_{|}~`
Суть шпаргалки: Она показывает, как эффективно удалить все стандартные знаки препинания из строки в Python, используя комбинацию методов str.maketrans для создания "инструкции" по удалению и str.translate для применения этой инструкции к строке.

@python_be1
Узнаем расстояние между городами

Геодезическое расстояние — это длина кратчайшего пути между двумя точками на любой поверхности Земли. В следующем примере мы покажем, как пользователь может вычислить геодезическое расстояние на основе данных широты и долготы.

В нашем примере мы узнаем, что расстояние между городами Нью-Йорк и Техас 2507 километров.

@python_be1
Если жена квантовик то всё поровну

@python_be1
🔍 Основные нововведения в Django 5.2

1. 📦 Автоматический импорт моделей в интерактивной оболочке
Теперь при запуске команды python manage.py shell все модели из установленных приложений автоматически импортируются.

Это упрощает работу в интерактивной оболочке, позволяя сразу использовать модели без необходимости ручного импорта. Для получения подробностей об импортированных объектах можно использовать флаг -v 2.​

2. 🔗 Поддержка составных первичных ключей
Django 5.2 вводит нативную поддержку составных первичных ключей через класс CompositePrimaryKey. Это позволяет создавать таблицы с первичным ключом, состоящим из нескольких полей, без необходимости использования сторонних решений.​

3. 🧩 Гибкая настройка BoundField в формах
Теперь можно переопределять класс BoundField на уровне проекта, формы или отдельного поля, устанавливая атрибут bound_field_class. Это предоставляет разработчикам более тонкий контроль над отображением и поведением форм.​

4. Расширенная асинхронная поддержка
Django продолжает движение в сторону асинхронности, добавляя новые асинхронные методы и улучшая реализацию бэкендов аутентификации. Это особенно полезно для операций, связанных с вводом-выводом, и способствует созданию более производительных приложений.​

5. 🎨 Новые виджеты форм и улучшения интерфейса
Добавлены новые виджеты форм, такие как ColorInput, SearchInput и TelInput, соответствующие стандартам HTML5. Также улучшена доступность форм для пользователей с особыми потребностями.​
Bastaki Software Solutions L.L.C-FZ

6. 🗃️ Улучшения в работе с базой данных
Поддержка изогнутых геометрий в GDAL, включая CurvePolygon, CompoundCurve, CircularString, MultiSurface и MultiCurve.

По умолчанию соединения с MySQL используют кодировку utf8mb4 вместо устаревшей utf8mb3.

Улучшена работа методов values() и values_list(), теперь они генерируют SELECT-запросы в указанном порядке.​

🔧 Совместимость и поддержка
Django 5.2 поддерживает Python версий 3.10–3.13.

С выходом этой версии, основная поддержка Django 5.1 завершена. Последний минорный релиз 5.1.8, также содержащий обновления безопасности, был выпущен одновременно с 5.2.

Django 5.0 достиг конца расширенной поддержки. Последний релиз безопасности, 5.0.14, также был выпущен сегодня. Рекомендуется обновиться до версии 5.1 или более новой.

📥 Обновление и ресурсы
Загрузить Django 5.2 можно с официальной страницы загрузки или через PyPI.

Полные примечания к релизу доступны в официальной документации.

Для автоматического обновления кода и устранения устаревших конструкций можно использовать инструмент django-upgrade.​
Django Project

Django 5.2 предлагает множество улучшений, направленных на упрощение разработки и повышение производительности приложений. Рекомендуется ознакомиться с новыми возможностями и планировать обновление своих проектов для использования всех преимуществ этой версии.

📌 Релиз (https://adamj.eu/tech/2025/04/07/django-whats-new-5.2/)

@python_be1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Python на скорости Rust

Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.

🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.

📦 Пример:
@compile (https://vk.com/club41774388)
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.

🔗 Подробнее (https://blog.fxn.ai/python-at-the-speed-of-rust/)
🔗 Github (https://github.com/olokobayusuf/)



#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm

@python_be1