🖥 Tach
Крутой и полезный инструмент: контроля вызова модулей и зависимостей для Python, напсианная на Rust.
С помощью Tach вы можете управлять тем, какие модули Python полагаются на какие другие. Чтобы избежать жесткой зависимости, модули также могут указывать общедоступный интерфейс.
В результате получается модульная, разделенная конструкция, которая упрощает разработку и обслуживание.
Любая попытка одного модуля импортировать другой, который явно не объявлен как зависимость, приведет к сообщению об ошибке от Tach. Когда для модуля установлен «строгий режим», Tach выдаст ошибку, если другой модуль попытается импортировать из него без использования его общедоступного интерфейса.
1. Он может показать что откуда кого вызывает и обращается в масштабе проекта, например (особенно, если он чужой)
2. Для CI процесса важно проверить перед деплоем, все ли ок, эта штука помогает это сделать
3. Контроль при коллективной разработке. Ставите ограничения на main например и фиг кто добавит в вызовы туда лишнее
pip install tach
▪ Github https://github.com/gauge-sh/tach
@python_be1
Крутой и полезный инструмент: контроля вызова модулей и зависимостей для Python, напсианная на Rust.
С помощью Tach вы можете управлять тем, какие модули Python полагаются на какие другие. Чтобы избежать жесткой зависимости, модули также могут указывать общедоступный интерфейс.
В результате получается модульная, разделенная конструкция, которая упрощает разработку и обслуживание.
Любая попытка одного модуля импортировать другой, который явно не объявлен как зависимость, приведет к сообщению об ошибке от Tach. Когда для модуля установлен «строгий режим», Tach выдаст ошибку, если другой модуль попытается импортировать из него без использования его общедоступного интерфейса.
1. Он может показать что откуда кого вызывает и обращается в масштабе проекта, например (особенно, если он чужой)
2. Для CI процесса важно проверить перед деплоем, все ли ок, эта штука помогает это сделать
3. Контроль при коллективной разработке. Ставите ограничения на main например и фиг кто добавит в вызовы туда лишнее
pip install tach
▪ Github https://github.com/gauge-sh/tach
@python_be1
GitHub
GitHub - gauge-sh/tach: A Python tool to visualize + enforce dependencies, using modular architecture 🌎 Open source 🐍 Installable…
A Python tool to visualize + enforce dependencies, using modular architecture 🌎 Open source 🐍 Installable via pip 🔧 Able to be adopted incrementally - ⚡ Implemented with no runtime impact ♾️ Intero...
This media is not supported in your browser
VIEW IN TELEGRAM
Pyxel - это игровой движок для Python в стиле ретро.
Благодаря своей простоте, вдохновленной старыми игровыми консолями (например, палитра состоит всего из 16 цветов, и только 4 звука могут быть проиграны одновременно), вы можете легко создавать игры в стиле пиксель-арт.
https://github.com/kitao/pyxel/blob/main/doc/README.ru.md
@python_be1
https://github.com/kitao/pyxel/blob/main/doc/README.ru.md
Благодаря своей простоте, вдохновленной старыми игровыми консолями (например, палитра состоит всего из 16 цветов, и только 4 звука могут быть проиграны одновременно), вы можете легко создавать игры в стиле пиксель-арт.
https://github.com/kitao/pyxel/blob/main/doc/README.ru.md
@python_be1
https://github.com/kitao/pyxel/blob/main/doc/README.ru.md
This media is not supported in your browser
VIEW IN TELEGRAM
💻 Vanna — точная генерация SQL-запросов с помощью LLM и RAG
Vanna — это open-source фреймворк Python для генерации SQL с использованием RAG
🖥 GitHub https://github.com/vanna-ai/vanna
🟡 Доки https://vanna.ai/docs/
@python_be1
https://github.com/vanna-ai/vanna
Vanna — это open-source фреймворк Python для генерации SQL с использованием RAG
🖥 GitHub https://github.com/vanna-ai/vanna
🟡 Доки https://vanna.ai/docs/
@python_be1
https://github.com/vanna-ai/vanna
21 лучших репозиториев на GitHub для новичков, изучающих Python
@python_be1
https://uproger.com/luchshie-repozitorii-na-github-dlya-novichkov-izuchayushhih-python/
@python_be1
https://uproger.com/luchshie-repozitorii-na-github-dlya-novichkov-izuchayushhih-python/
UPROGER | Программирование
22 лучших репозитория на GitHub для новичков, изучающих Python
Изучение Python может быть увлекательным и продуктивным, особенно если воспользоваться правильными ресурсами. GitHub - это сокровищница учебных материалов и примеров кода. Вот список лучших актуальных репозиториев для новичков, которые помогут вам освоить…
🖥 Продвинутый Python с уклоном в DS и ML
Держите отличный учебник/туториал по продвинутым темам Python.
Здесь освещается большое количество разных тем, вот некоторые:
— ООП: классы, магические методы, атрибуты
— декораторы
— загрузка и предобработка датасета
— кросс-валидация
— построение разных графиков
🟡 https://hsf-training.github.io/analysis-essentials/advanced-python/README.html
@python_be1
https://hsf-training.github.io/analysis-essentials/advanced-python/README.html
Держите отличный учебник/туториал по продвинутым темам Python.
Здесь освещается большое количество разных тем, вот некоторые:
— ООП: классы, магические методы, атрибуты
— декораторы
— загрузка и предобработка датасета
— кросс-валидация
— построение разных графиков
🟡 https://hsf-training.github.io/analysis-essentials/advanced-python/README.html
@python_be1
https://hsf-training.github.io/analysis-essentials/advanced-python/README.html
🗃 Библиотеки для работы с временными рядами
🔴Прогнозирование
• [17,9k stars] https://github.com/facebook/prophet
• [9,6k stars] https://github.com/statsmodels/statsmodels
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [7,4k stars] https://github.com/unit8co/darts
• [4,8k stars] https://github.com/facebookresearch/Kats
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [3,7k stars] https://github.com/jdb78/pytorch-forecasting
• [3,3k stars] https://github.com/salesforce/Merlion
• [1,8k stars] https://github.com/linkedin/greykite
• [840 stars] https://github.com/etna-team/etna
• [610 stars] https://github.com/aimclub/FEDOT
🟢Классификация
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [2,8k stars] https://github.com/tslearn-team/tslearn/
• [1,7k stars] https://github.com/johannfaouzi/pyts
• [1,5k stars] https://github.com/hfawaz/dl-4-tsc
• [840 stars] https://github.com/tinkoff-ai/etna
🟣Кластеризация
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [2,8k stars] https://github.com/tslearn-team/tslearn/
🟡Агрегация (выделение признаков)
• [8,2k stars] https://github.com/blue-yonder/tsfresh
• [4,8k stars] https://github.com/facebookresearch/Kats
• [800 stars] https://github.com/fraunhoferportugal/tsfel
• [370 stars] https://github.com/predict-idlab/tsflex
🔵Поиск аномалий (changepoint detection)
• [1,5k stars] https://github.com/deepcharles/ruptures
• [17,9k stars] https://github.com/facebook/prophet
• [4,8k stars] https://github.com/facebookresearch/Kats
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [3,3k stars] https://github.com/salesforce/Merlion
• [2,1k stars] https://github.com/SeldonIO/alibi-detect
• [1,8k stars] https://github.com/linkedin/greykite
• [1,2k stars] https://github.com/linkedin/luminol
• [1k stars] https://github.com/arundo/adtk
🔴Поиск аномалий (outlier detection)
• [8k stars] https://github.com/yzhao062/pyod
• [1,3 stars] https://github.com/datamllab/tods
• [840 stars] https://github.com/tinkoff-ai/etna
• [750 stars] https://github.com/zillow/luminaire/
• [220 stars] https://github.com/selimfirat/pysad
🟢Аугментация и генерация
• [4,8k stars] https://github.com/timeseriesAI/tsai
• [630 stars] https://github.com/ratschlab/RGAN
• [330 stars] https://github.com/arundo/tsaug
• [330 stars] https://github.com/TimeSynth/TimeSynth
• [320 stars] https://github.com/uchidalab/time_series_augmentation
@python_be1
🔴Прогнозирование
• [17,9k stars] https://github.com/facebook/prophet
• [9,6k stars] https://github.com/statsmodels/statsmodels
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [7,4k stars] https://github.com/unit8co/darts
• [4,8k stars] https://github.com/facebookresearch/Kats
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [3,7k stars] https://github.com/jdb78/pytorch-forecasting
• [3,3k stars] https://github.com/salesforce/Merlion
• [1,8k stars] https://github.com/linkedin/greykite
• [840 stars] https://github.com/etna-team/etna
• [610 stars] https://github.com/aimclub/FEDOT
🟢Классификация
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [2,8k stars] https://github.com/tslearn-team/tslearn/
• [1,7k stars] https://github.com/johannfaouzi/pyts
• [1,5k stars] https://github.com/hfawaz/dl-4-tsc
• [840 stars] https://github.com/tinkoff-ai/etna
🟣Кластеризация
• [7,5k stars] https://github.com/alan-turing-institute/sktime
• [2,8k stars] https://github.com/tslearn-team/tslearn/
🟡Агрегация (выделение признаков)
• [8,2k stars] https://github.com/blue-yonder/tsfresh
• [4,8k stars] https://github.com/facebookresearch/Kats
• [800 stars] https://github.com/fraunhoferportugal/tsfel
• [370 stars] https://github.com/predict-idlab/tsflex
🔵Поиск аномалий (changepoint detection)
• [1,5k stars] https://github.com/deepcharles/ruptures
• [17,9k stars] https://github.com/facebook/prophet
• [4,8k stars] https://github.com/facebookresearch/Kats
• [4,7k stars] https://github.com/thuml/Time-Series-Library
• [3,3k stars] https://github.com/salesforce/Merlion
• [2,1k stars] https://github.com/SeldonIO/alibi-detect
• [1,8k stars] https://github.com/linkedin/greykite
• [1,2k stars] https://github.com/linkedin/luminol
• [1k stars] https://github.com/arundo/adtk
🔴Поиск аномалий (outlier detection)
• [8k stars] https://github.com/yzhao062/pyod
• [1,3 stars] https://github.com/datamllab/tods
• [840 stars] https://github.com/tinkoff-ai/etna
• [750 stars] https://github.com/zillow/luminaire/
• [220 stars] https://github.com/selimfirat/pysad
🟢Аугментация и генерация
• [4,8k stars] https://github.com/timeseriesAI/tsai
• [630 stars] https://github.com/ratschlab/RGAN
• [330 stars] https://github.com/arundo/tsaug
• [330 stars] https://github.com/TimeSynth/TimeSynth
• [320 stars] https://github.com/uchidalab/time_series_augmentation
@python_be1
GitHub
GitHub - facebook/prophet: Tool for producing high quality forecasts for time series data that has multiple seasonality with linear…
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth. - facebook/prophet
👍1
⚡Легкий способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
935 ГБ слитых курсов: https://t.me/+g5AzP6rXn5k3YmMy
Машинное обучение: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
2310 вопросов с python собеседований t.me/python_job_interview
ИИ/технологии t.me/vistehno
Базы данных: t.me/sqlhub
Data Science: t.me/data_analysis_ml
C#: t.me/csharp_ci
Go: t.me/Golang_google
Хакинг: t.me/linuxkalii
Java: t.me/javatg
Javascript: t.me/javascriptv
React: t.me/react_tg
C++/ t.me/cpluspluc
Devops: t.me/devOPSitsec
Linux: t.me/+A8jY79rcyKJlYWY6
Docker: t.me/+0WdB4uvOwCY0Mjdi
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Big Data: t.me/bigdatai
Тестирование:https://t.me/+F9jPLmMFqq1kNTMy
Аналитика данных: https://t.me/+mAXY9ppJwitkMDBi
Kubernets: t.me/+vE7jzitan5QzZjVi
1900 разобранных вопросов с собеседований мл t.me/machinelearning_interview
Frontend https://t.me/+U3U3HoZzEglkNDdi
Мобильная разработка: t.me/mobdevelop
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
ИИ: t.me/vistehno
Книги по искусственному интеллекту https://t.me/+2rl907ptiWliYmYy
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка Java разработчика: https://t.me/addlist/ZM3J6oFNAnRlNWU6
Папка С# https://t.me/addlist/u15AMycxRMowZmRi
Папка frontend https://t.me/addlist/mzMMG3RPZhY2M2Iy
💥 Бесплатный Chatgpt бот: t.me/Chatgpturbobot
@python_be1
http://t.me/ai_machinelearning_big_data
935 ГБ слитых курсов: https://t.me/+g5AzP6rXn5k3YmMy
Машинное обучение: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
2310 вопросов с python собеседований t.me/python_job_interview
ИИ/технологии t.me/vistehno
Базы данных: t.me/sqlhub
Data Science: t.me/data_analysis_ml
C#: t.me/csharp_ci
Go: t.me/Golang_google
Хакинг: t.me/linuxkalii
Java: t.me/javatg
Javascript: t.me/javascriptv
React: t.me/react_tg
C++/ t.me/cpluspluc
Devops: t.me/devOPSitsec
Linux: t.me/+A8jY79rcyKJlYWY6
Docker: t.me/+0WdB4uvOwCY0Mjdi
Rust: t.me/rust_code
PHP: t.me/phpshka
Android: t.me/android_its
Big Data: t.me/bigdatai
Тестирование:https://t.me/+F9jPLmMFqq1kNTMy
Аналитика данных: https://t.me/+mAXY9ppJwitkMDBi
Kubernets: t.me/+vE7jzitan5QzZjVi
1900 разобранных вопросов с собеседований мл t.me/machinelearning_interview
Frontend https://t.me/+U3U3HoZzEglkNDdi
Мобильная разработка: t.me/mobdevelop
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
ИИ: t.me/vistehno
Книги по искусственному интеллекту https://t.me/+2rl907ptiWliYmYy
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка Java разработчика: https://t.me/addlist/ZM3J6oFNAnRlNWU6
Папка С# https://t.me/addlist/u15AMycxRMowZmRi
Папка frontend https://t.me/addlist/mzMMG3RPZhY2M2Iy
💥 Бесплатный Chatgpt бот: t.me/Chatgpturbobot
@python_be1
http://t.me/ai_machinelearning_big_data
Telegram
Data science Архив бесплатных курсов
Огромное количество БЕСПЛАТНЫХ СЛИТЫХ курсов прямо в Телеграм!
https://t.me/+rKBQEMccAA01MTcy - ссылка для друга
https://t.me/+rKBQEMccAA01MTcy - ссылка для друга
👍1
Мастера собрали все хоткеи в одну большую библиотеку.
Здесь есть все: от ОС и браузеров, до VSCode и других IDE — сотни шпаргалок больше не нужны, ведь теперь всё лежит в одном месте.
https://hotkeycheatsheet.com/ru
@python_be1
https://hotkeycheatsheet.com/ru
Здесь есть все: от ОС и браузеров, до VSCode и других IDE — сотни шпаргалок больше не нужны, ведь теперь всё лежит в одном месте.
https://hotkeycheatsheet.com/ru
@python_be1
https://hotkeycheatsheet.com/ru
👍1
🖥 Kapitan — инструмент на Python для управления шаблонами Kubernetes, Terraform и не только
Kapitan — это не самый хайповый инструмент, но в некоторых ситуациях он очень полезен, и для кого-то будет удобнее, чем Helm
С технической точки зрения Kapitan очень прост и включает в себя такие компоненты:
— иерархическая коллекция значений в yaml-формате, которые подставляются в шаблоны
— шаблонизаторы: Jinja2, Jsonnet, Kadet; они берут значения и создают файлы (yaml, json или bash-скрипты).
— компонент для управления секретами
Быстрый старт с Docker:
docker run -t —rm -v $(pwd):/src:delegated kapicorp/kapitan -h
🖥 GitHub https://github.com/kapicorp/kapitan
🟡 Доки https://kapitan.dev/
🟡 Пример использования Kapitan https://www.youtube.com/watch?v=M81qU94FCLQ
@python_be1
Kapitan — это не самый хайповый инструмент, но в некоторых ситуациях он очень полезен, и для кого-то будет удобнее, чем Helm
С технической точки зрения Kapitan очень прост и включает в себя такие компоненты:
— иерархическая коллекция значений в yaml-формате, которые подставляются в шаблоны
— шаблонизаторы: Jinja2, Jsonnet, Kadet; они берут значения и создают файлы (yaml, json или bash-скрипты).
— компонент для управления секретами
Быстрый старт с Docker:
docker run -t —rm -v $(pwd):/src:delegated kapicorp/kapitan -h
🖥 GitHub https://github.com/kapicorp/kapitan
🟡 Доки https://kapitan.dev/
🟡 Пример использования Kapitan https://www.youtube.com/watch?v=M81qU94FCLQ
@python_be1
👍1
⚡ Arcee: Семейство merdge-моделей от сервиса arcee.ai
Arcee.ai - сервис, основанный в сентябре 2023 года ( Mark McQuade, Jacob Solawetz и Brian Benedict), который предоставляет услуги тренинга LLM для корпоративных клиентов.
Сервисом представлены в открытом доступе 2 новые модели: Arcee-Scribe и Arcee-Nova.
✔ Arcee-Scribe (7.74B) - это универсальная модель чата, ориентированная на рассуждения, решение творческих задач и написание текстов.
Модель представляет собой слияние InternLM-2.5-chat с пользовательской InternLM finetune, включающей как общие, так и специфические для письма данные.
Возможности и примеры использования:
🟢role-play диалоги с подтекстом и сложными эмоциями;
🟢объяснение сложных идей с помощью творческих аналогий;
🟢создание историй с нелинейным повествованием или уникальной перспективой и сложной повествовательной структурой;
🟢решение бизнес-задач: создание контента, описание продукции, коммуникация с потребителями, брейнстрорминг.
Модель набрала 48.5 балла в AGI-Eval, 60.1 в BIG Bench Hard и 69.4 в GPT 4ALL бенчмарках.
Это лучший показатель по сравнению с Llama-3-8B-Instuct по всем тестам и Mistral-7B-Instruct v03 в двух из трех.
Модель представлена в квантованиях (GGUF) от 2Bit (Q2 - 2.78GB) до 32bit (F32 - 31Gb) и
в Transformers
✔ Arcee-Nova (72.7B) - высокопроизводительная мультиязычная модель с широким спектром языковых задач. Nova - это объединение Qwen2-72B-Instruct с собственной моделью, настроенной на смеси обобщенных данных.
Возможности и примеры использования:
🟠решение сложных задач, логические выводы и рассуждения;
🟠создание увлекательного и оригинального текстового контента в различных жанрах;
🟠помощь в решении задач программирования, от создания кода до его отладки;
🟠общее понимание языка, создание человекоподобных текстов в различных контекстах.
🟠решение бизнес-задач: создание контента, разработка программного обеспечения, коммуникация с потребителями, анализ данных и построение отчетов, исследования и гипотезы, анализ документов и проверка соответствия нормативным требованиям, адаптивные системы обучения и интеллектуальные обучающие программы.
Модель показала лучшие результаты (43.68) в совокупности тестов ( IFEval, BBH, MATH Lvl 5, GPQA, MUSR и MMLU-PRO) по сравнению с Qwen2-72B-Instruct, OrcaMini_V7-72B, LLama-3-70B-Instruct-DPO-v2.0 и другими моделями.
Модель представлена в квантованиях (GGUF) от 1Bit (Q1 - 24GB) до 16bit (F32 - 145Gb) и
в Transformers
📌Лицензирование Arcee-Scribe
Для некоммерческих проектов - Apache2.0
Для коммерческого использования: - через подачу заявки у InternLM
📌Лицензирование Arcee-Nova
Для некоммерческих проектов - свободно, тип не определен.
Для коммерческого использования: - симметрично Qwen2-72B
🟡Страница проекта https://www.arcee.ai/
🟡Модели Arcee-Scribe https://huggingface.co/arcee-ai/Arcee-Scribe-GGUFhttps://huggingface.co/arcee-ai/Arcee-Scribe-GGUF
🟡Модели Arcee-Nova https://huggingface.co/arcee-ai/Arcee-Nova-GGUF
🟡Demo Arcee-Nova https://udify.app/chat/s3i0GX51Rwrb4XRm
#AI #LLM #GGUF #ML #ArceeNova #ArceeScribe
@python_be1
http://arcee.ai/
Arcee.ai - сервис, основанный в сентябре 2023 года ( Mark McQuade, Jacob Solawetz и Brian Benedict), который предоставляет услуги тренинга LLM для корпоративных клиентов.
Сервисом представлены в открытом доступе 2 новые модели: Arcee-Scribe и Arcee-Nova.
✔ Arcee-Scribe (7.74B) - это универсальная модель чата, ориентированная на рассуждения, решение творческих задач и написание текстов.
Модель представляет собой слияние InternLM-2.5-chat с пользовательской InternLM finetune, включающей как общие, так и специфические для письма данные.
Возможности и примеры использования:
🟢role-play диалоги с подтекстом и сложными эмоциями;
🟢объяснение сложных идей с помощью творческих аналогий;
🟢создание историй с нелинейным повествованием или уникальной перспективой и сложной повествовательной структурой;
🟢решение бизнес-задач: создание контента, описание продукции, коммуникация с потребителями, брейнстрорминг.
Модель набрала 48.5 балла в AGI-Eval, 60.1 в BIG Bench Hard и 69.4 в GPT 4ALL бенчмарках.
Это лучший показатель по сравнению с Llama-3-8B-Instuct по всем тестам и Mistral-7B-Instruct v03 в двух из трех.
Модель представлена в квантованиях (GGUF) от 2Bit (Q2 - 2.78GB) до 32bit (F32 - 31Gb) и
в Transformers
✔ Arcee-Nova (72.7B) - высокопроизводительная мультиязычная модель с широким спектром языковых задач. Nova - это объединение Qwen2-72B-Instruct с собственной моделью, настроенной на смеси обобщенных данных.
Возможности и примеры использования:
🟠решение сложных задач, логические выводы и рассуждения;
🟠создание увлекательного и оригинального текстового контента в различных жанрах;
🟠помощь в решении задач программирования, от создания кода до его отладки;
🟠общее понимание языка, создание человекоподобных текстов в различных контекстах.
🟠решение бизнес-задач: создание контента, разработка программного обеспечения, коммуникация с потребителями, анализ данных и построение отчетов, исследования и гипотезы, анализ документов и проверка соответствия нормативным требованиям, адаптивные системы обучения и интеллектуальные обучающие программы.
Модель показала лучшие результаты (43.68) в совокупности тестов ( IFEval, BBH, MATH Lvl 5, GPQA, MUSR и MMLU-PRO) по сравнению с Qwen2-72B-Instruct, OrcaMini_V7-72B, LLama-3-70B-Instruct-DPO-v2.0 и другими моделями.
Модель представлена в квантованиях (GGUF) от 1Bit (Q1 - 24GB) до 16bit (F32 - 145Gb) и
в Transformers
📌Лицензирование Arcee-Scribe
Для некоммерческих проектов - Apache2.0
Для коммерческого использования: - через подачу заявки у InternLM
📌Лицензирование Arcee-Nova
Для некоммерческих проектов - свободно, тип не определен.
Для коммерческого использования: - симметрично Qwen2-72B
🟡Страница проекта https://www.arcee.ai/
🟡Модели Arcee-Scribe https://huggingface.co/arcee-ai/Arcee-Scribe-GGUFhttps://huggingface.co/arcee-ai/Arcee-Scribe-GGUF
🟡Модели Arcee-Nova https://huggingface.co/arcee-ai/Arcee-Nova-GGUF
🟡Demo Arcee-Nova https://udify.app/chat/s3i0GX51Rwrb4XRm
#AI #LLM #GGUF #ML #ArceeNova #ArceeScribe
@python_be1
http://arcee.ai/
www.arcee.ai
Arcee AI
Arcee AI is an American open-intelligence lab focused on accelerating the competitive landscape for open-weight models in the United States.
👍1