🖥 Pydantic имеет встроенную функцию <code>#DataValidation</code> , но она потребляет много памяти.
<code>Attrs</code> не имеет встроенной проверки данных и обеспечивает более высокую производительность и меньшее использование памяти, что идеально подходит для внутренних структур данных и простого создания классов в #Python.
<pre language="python">
from attrs import define, field
@club217046016 (@define)
class UserAttrs:
name: str
age: int = field()
@age.validator
def check_age(self, attribute, value):
if value < 0:
raise ValueError("Age can't be negative")
return value # accepts any positive age
try:
user = UserAttrs(name="Bob", age=-1)
except ValueError as e:
print("ValueError:", e)</pre>
📌 Пример (https://codecut.ai/python-data-models-pydantic-or-attrs)
@python_be1
<code>Attrs</code> не имеет встроенной проверки данных и обеспечивает более высокую производительность и меньшее использование памяти, что идеально подходит для внутренних структур данных и простого создания классов в #Python.
<pre language="python">
from attrs import define, field
@club217046016 (@define)
class UserAttrs:
name: str
age: int = field()
@age.validator
def check_age(self, attribute, value):
if value < 0:
raise ValueError("Age can't be negative")
return value # accepts any positive age
try:
user = UserAttrs(name="Bob", age=-1)
except ValueError as e:
print("ValueError:", e)</pre>
📌 Пример (https://codecut.ai/python-data-models-pydantic-or-attrs)
@python_be1