Python4Finance
9.35K subscribers
567 photos
41 videos
152 files
758 links
کانال Python4Finance
آموزش پایتون در اقتصاد و مدیریت مالی
هر روز چند نکته را در خصوص پایتون برای مالی بیاموزیم
***
ارتباط با من
b2n.ir/y72935
***
آپارت:
aparat.com/Python4Finance
کانال چالش ها:
t.me/python4finance_challenge
Download Telegram
سنجش نرمال بودن داده ها 1 (normality test)
در اقتصاد و مالی نرمال بودن داده های یک توزیع به سه دلیل بسیار حائز اهمیت است.
اول اینکه فرض می شود بسیاری از داده ها (مانند نرخ بازده) از توزیع نرمال پیروی می کنند.
دوم اینکه جزء خطا در بسیاری از مدل های اقتصاد سنجی نرمال در نظر گرفته می شود.
سوم اینکه برای کار با داده های نرمال، مدلهای بسیار زیادی وجود دارد.
یکی از متداولترین آزمون ها برای سنجش نرمال بودن یک توزیع آزمون شاپیرو -ویلک (Shapiro-Wilk) است. این آزمون دو مقدار w و p را باز می گرداند. فرض null این است که داده نرمال است بنابراین اگر مقدار P-Value بزرگتر از 0.05 باشد فرضیه صفر یعنی نرمال بودن تایید می شود.
در مثال این پست دو توزیع تصادفی ایجاد می شود و نرمال بودن در آنها بررسی می شود.
#نرمال
#شاپیرو -ویلک
#scipy
#normality_test
#Shapiro-Wilk

پایتون برای مالی
@python4finance
18
سنجش نرمال بودن داده ها 2 (normality test)
یکی دیگر از آزمون هایی که برای سنجش نرمال بودن داده ها استفاده می شود آزمون اندرسون دارلینگ (Anderson-Darling) است. البته مزیت این آزمون این است که می تواند علاوه بر توزیع نرمال برای شناسایی سایر توزیع های متداول هم استفاده شود.
خروجی این آماره سه مقدار خواهد بود:
آماره آزمون اندرسون دارلینگ، مقادیر بحرانی و سطوح اطمینان متناظر آنها
همانطور که در تصویر این پست مشخص است برای سطح اطمینان 5% مقدار بحرانی 0.786 در نظر گرفته شده است که مقدار آماره مدل از این مقدار کمتر است. پس بنابراین فرضیه صفر که فرض نرمال بودن است در این مثال تایید می شود.
در پست های آتی در خصوص خواص توزیع نرمال و اهیمت آن در اقتصاد و مالی ان شاء الله مفصل صحبت خواهیم کرد.

#نرمال
#اندرسون_دارلینگ
#scipy
#normality_test
#Anderson-Darling

پایتون برای مالی
@python4finance
16