اعمال یک تابع روی دیتافریم با تابع apply
یکی از توابع کارآمد در کار با دیتافریم ها تابع apply است. به کمک این تابع می توانید توابع مورد نظر خود را روی دیتافریم اعمال کنید. تابع apply بعد از groupby استفاده می شود.
یک مثال:
فرض کنید میزان خرید و فروش سهام خود را از دو سهم A و B به صورت روزانه ثبت کرده اید.
می خواهیم میزان خرید و فروش کل از هر سهم را محاسبه کنیم.
می خواهیم درصد خرید و فروش هر کدام از سهم ها را نیز محاسبه کنیم.
در مثال این پست می توانید نمونه کد این مثال را مشاهده نمایید.
#دیتافریم
#اعمال_تابع
#پایتون_مالی
#dataframe
#pandas
#groupby
#apply
@python4finance
یکی از توابع کارآمد در کار با دیتافریم ها تابع apply است. به کمک این تابع می توانید توابع مورد نظر خود را روی دیتافریم اعمال کنید. تابع apply بعد از groupby استفاده می شود.
یک مثال:
فرض کنید میزان خرید و فروش سهام خود را از دو سهم A و B به صورت روزانه ثبت کرده اید.
می خواهیم میزان خرید و فروش کل از هر سهم را محاسبه کنیم.
می خواهیم درصد خرید و فروش هر کدام از سهم ها را نیز محاسبه کنیم.
در مثال این پست می توانید نمونه کد این مثال را مشاهده نمایید.
#دیتافریم
#اعمال_تابع
#پایتون_مالی
#dataframe
#pandas
#groupby
#apply
@python4finance
مقایسه عناصر دو دیتافریم
حالتی را تصور کنید که شما داده های مربوط به یک نماد (مثلا بیت کوین) را در یک بازه زمانی مشخص از دو کارگزاری مختلف دریافت می کنید اما در محاسبات (مثلا محاسبه انحراف معیار یا میانگین) نتایج مختلفی را مشاهده می کنید. در این حالت ابتدا لازم است یکسان بودن داده ها را بررسی کنید. برای بررسی یکسان بودن داده ها از تابع compare در pandas استفاده می کنیم.
در مثال این پست، عناصر دو دیتافریم بررسی و تفاوت ها نمایش داده می شود.
#دیتا_فریم
#پانداس
#پایتون_مالی
#DataFrame
#Pandas
#python
@python4finance
حالتی را تصور کنید که شما داده های مربوط به یک نماد (مثلا بیت کوین) را در یک بازه زمانی مشخص از دو کارگزاری مختلف دریافت می کنید اما در محاسبات (مثلا محاسبه انحراف معیار یا میانگین) نتایج مختلفی را مشاهده می کنید. در این حالت ابتدا لازم است یکسان بودن داده ها را بررسی کنید. برای بررسی یکسان بودن داده ها از تابع compare در pandas استفاده می کنیم.
در مثال این پست، عناصر دو دیتافریم بررسی و تفاوت ها نمایش داده می شود.
#دیتا_فریم
#پانداس
#پایتون_مالی
#DataFrame
#Pandas
#python
@python4finance
یک کتابخانه بسیار سریع برای کار با داده ها-Polars
در پایتون برای مشاهده و دستکاری داده ها عموما از Pandas استفاده می کنیم. پانداس کتابخانه بسیار خوب و جامعی است اما وقتی تعداد داده ها بزرگ می شود کارایی پانداس رفته رفته کم می شود و سرعت پردازش هم پایین می آید. البته دلیل آن مشخص است. پانداس برای کار با Multithreading ساخته نشده است و در هر لحظه یک thread را پردازش می کند.
برای حل این موضوع از Polars استفاده می کنیم. Polars بر سرعت و کارایی تمرکز دارد. هنگام کار با میلیونها ردیف، پانداس دچار مشکل می شود اما با Polars به راحتی اجرا میشوند.
یک ویژگی جالب دیگر Polars توانایی پردازش داده های با حجم بالاتر از RAM سیستم است.
کار با polars بسیار ساده است و توابع آن شبیه پانداس نوشته است.
اگر به این ماژول علاقه مند شدید سری به این آدرس بزنید.
در تصویر این پست، مقایسه چند ماژول متداول کار با داده ها برای کار با یک دیتافریم بزرگ نشان داده شده است.
#polars
#pandas
#dataframe
پایتون برای مالی
🆔 t.me/python4finance
🆔 ble.ir/python4finance
در پایتون برای مشاهده و دستکاری داده ها عموما از Pandas استفاده می کنیم. پانداس کتابخانه بسیار خوب و جامعی است اما وقتی تعداد داده ها بزرگ می شود کارایی پانداس رفته رفته کم می شود و سرعت پردازش هم پایین می آید. البته دلیل آن مشخص است. پانداس برای کار با Multithreading ساخته نشده است و در هر لحظه یک thread را پردازش می کند.
برای حل این موضوع از Polars استفاده می کنیم. Polars بر سرعت و کارایی تمرکز دارد. هنگام کار با میلیونها ردیف، پانداس دچار مشکل می شود اما با Polars به راحتی اجرا میشوند.
یک ویژگی جالب دیگر Polars توانایی پردازش داده های با حجم بالاتر از RAM سیستم است.
کار با polars بسیار ساده است و توابع آن شبیه پانداس نوشته است.
اگر به این ماژول علاقه مند شدید سری به این آدرس بزنید.
در تصویر این پست، مقایسه چند ماژول متداول کار با داده ها برای کار با یک دیتافریم بزرگ نشان داده شده است.
#polars
#pandas
#dataframe
پایتون برای مالی
🆔 t.me/python4finance
🆔 ble.ir/python4finance
❤18