《ML for Trading》第二版
这本书旨在以一种实用且全面的方式展示机器学习如何为算法交易策略增加价值。它涵盖了从线性回归到深度强化学习的广泛机器学习技术,并演示了如何构建、回测和评估由模型预测驱动的交易策略。
它分为四部分,23 章和一个附录,共800 多页:
数据来源、金融特征工程和投资组合管理的重要方面,
基于有监督和无监督 ML 算法的多空策略的设计和评估,
如何从SEC 文件、财报电话会议记录或金融新闻等金融文本数据中提取可交易信号,
将 CNN 和 RNN 等深度学习模型与市场和替代数据结合使用,如何使用生成对抗网络生成合成数据,以及使用深度强化学习训练交易代理
该存储库包含150 多个笔记本,这些笔记本将书中讨论的概念、算法和用例付诸实践。他们提供了大量示例来说明:
如何使用市场、基本和替代文本和图像数据并从中提取信号,
如何训练和调整预测不同资产类别和投资期限的回报的模型,包括如何复制最近发表的研究,以及如何设计、回测和评估交易策略。
repo | amazon | #电子书 #机器学习
这本书旨在以一种实用且全面的方式展示机器学习如何为算法交易策略增加价值。它涵盖了从线性回归到深度强化学习的广泛机器学习技术,并演示了如何构建、回测和评估由模型预测驱动的交易策略。
它分为四部分,23 章和一个附录,共800 多页:
数据来源、金融特征工程和投资组合管理的重要方面,
基于有监督和无监督 ML 算法的多空策略的设计和评估,
如何从SEC 文件、财报电话会议记录或金融新闻等金融文本数据中提取可交易信号,
将 CNN 和 RNN 等深度学习模型与市场和替代数据结合使用,如何使用生成对抗网络生成合成数据,以及使用深度强化学习训练交易代理
该存储库包含150 多个笔记本,这些笔记本将书中讨论的概念、算法和用例付诸实践。他们提供了大量示例来说明:
如何使用市场、基本和替代文本和图像数据并从中提取信号,
如何训练和调整预测不同资产类别和投资期限的回报的模型,包括如何复制最近发表的研究,以及如何设计、回测和评估交易策略。
repo | amazon | #电子书 #机器学习
Media is too big
VIEW IN TELEGRAM
深度学习数学工程 | YouTube | #机器学习 #电子书
本书提供了深度学习的完整且简明的数学工程概述。内容包括卷积神经网络、递归神经网络、transformer、生成式对抗网络、强化学习、图神经网络等。
书中聚焦于深度学习模型、算法和方法的基本数学描述,很大程度上与编程代码、神经科学关系、历史视角无关。数学基础的读者可以快速掌握现代深度学习算法、模型和技术的本质。
深度学习可以通过数学语言在许多专业人员可理解的层面上进行描述。工程、信号处理、统计、物理、纯数学等领域的读者可以快速洞察该领域的关键数学工程组成部分。
书里包含深度学习的基础原理、主要模型架构、优化算法等内容。另外还提供了相关课程、工作坊、源代码等资源。
本内容面向想要从数学工程视角理解深度学习的专业人员,内容覆盖了深度学习的主要技术,使用简明的数学语言描述深度学习的关键组成部分,是了解深度学习数学本质的很好资源。
本书提供了深度学习的完整且简明的数学工程概述。内容包括卷积神经网络、递归神经网络、transformer、生成式对抗网络、强化学习、图神经网络等。
书中聚焦于深度学习模型、算法和方法的基本数学描述,很大程度上与编程代码、神经科学关系、历史视角无关。数学基础的读者可以快速掌握现代深度学习算法、模型和技术的本质。
深度学习可以通过数学语言在许多专业人员可理解的层面上进行描述。工程、信号处理、统计、物理、纯数学等领域的读者可以快速洞察该领域的关键数学工程组成部分。
书里包含深度学习的基础原理、主要模型架构、优化算法等内容。另外还提供了相关课程、工作坊、源代码等资源。
本内容面向想要从数学工程视角理解深度学习的专业人员,内容覆盖了深度学习的主要技术,使用简明的数学语言描述深度学习的关键组成部分,是了解深度学习数学本质的很好资源。