Physics.Math.Code
149K subscribers
5.22K photos
2.3K videos
5.79K files
4.62K links
Купить рекламу: https://telega.in/c/physics_lib

VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
🔄 Генри Кавендиш: человек, который взвесил Землю 🌏

В истории физики есть эксперименты, которые меняют всё. Опыт Кавендиша 1797–1798 годов — не просто дата в учебнике. Это первое в истории измерение гравитации в «лабораторных» масштабах. Вопреки распространенному заблуждению, Кавендиш не измерял гравитационную постоянную G. Этой концепции тогда просто не существовало (она вошла в обиход лишь спустя 75 лет, в 1873 году)

Задача: определить среднюю плотность Земли.
Метод: Кавендиш пересобрал крутильные весы, изобретенные геологом Джоном Мичеллом, который умер, не завершив работу. Установка представляла собой коромысло с двумя маленькими свинцовыми сферами (по 0,73 кг), подвешенное на тонкой проволоке. К ним снаружи подводили две массивные сферы (по 158 кг).

Измеряя угол закручивания нити (всего 0,03–0,16 дюйма!), он рассчитал силу притяжения между гирями. Сравнив её с силой тяжести Земли, действующей на те же шары, он получил, что Земля в 5,48 раза плотнее воды. Это дало массу Земли — 6 секстиллионов тонн.

📜 3 малоизвестных факта о гравитации, связанных с этим опытом:

▪️ 1. Преемственность гения
Кавендиш не строил прибор с нуля. Установку спроектировал преподобный Джон Мичелл за 15 лет до опыта. После смерти Мичелла инструмент попал к Кавендишу, и тот не просто повторил задумку — он модернизировал её, сделав управление шарами дистанционным (из соседней комнаты). Любое тепло от тела экспериментатора или сквозняк создавали помехи, превышающие гравитационный сигнал.

▪️ 2. Арифметическая ошибка в оригинале
В знаменитой статье Кавендиша 1798 года в Philosophical Transactions указана итоговая цифра 5,48 г/см³. Однако из-за ошибки в расчётах (обнаруженной Фрэнсисом Бейли в 1821 году) в его выводах значилось 5,50. Реальный результат, который лежал в черновиках, был всего на 1,4% ниже современного эталона (5,515 г/см³). Для конца XVIII века — фантастическая точность.

▪️ 3. Гравитация «не знает» состава тел
Опыт Кавендиша доказал, что закон Ньютона работает не только для планет, но и для пары свинцовых шаров. Спустя 200 лет, в 1999 году, группа Стивена Чу (Нобелевский лауреат) подтвердила этот принцип с точностью до 7 частей на миллиард, используя атомную интерферометрию. Гравитация действует на атом цезия и на килограммовую гирю абсолютно одинаково, несмотря на квантовую природу первых и классическую — вторых. Это прямое доказательство принципа эквивалентности, которое «добило» сомнения в результатах более ранних нейтронных экспериментов.

Кавендиш превратил гравитацию из абстрактной силы, управляющей планетами, в величину, доступную для прямого измерения. Без его весов не было бы ни современных уточнений G, ни понимания того, как эволюционируют галактики.
#гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41👍29212❤‍🔥1
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.

Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.

Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.

Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.

История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика

⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм

📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61👍20166🗿5😭3
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

💾 Скачать книги

Монография выдающихся американских физиков посвящена изложению физических основ, современного математического аппарата и важнейших достижений теории тяготения Эйнштейна. Также один из авторов работал над фильмом "Интерстеллар".
Рекомендуем всем! Поделись с другом-инженером хорошими книгами.
Издатель: У. Х. Фримен. Издательство Принстонского университета.

Книга по-прежнему пользуется авторитетом в физическом сообществе и получает в основном положительные отзывы, но некоторые критикуют её за объём и стиль изложения.
«Гравитация» — настолько выдающаяся книга по теории относительности, что инициалы её авторов — М. Т. В. — могут использоваться в других книгах по теории относительности без каких-либо пояснений.

Спустя более тридцати лет после публикации «Гравитация» по-прежнему остаётся наиболее полным трактатом по общей теории относительности. На его 1300 страницах можно найти авторитетное и исчерпывающее обсуждение практически любой темы, связанной с этой областью. В книге также содержится обширная библиография со ссылками на первоисточники. Написанная тремя выдающимися учёными XX века, она задала тон многим последующим текстам по этой теме, в том числе и этому. — Джеймс Хартл

Книга, которая стала источником знаний как минимум для двух поколений исследователей в области гравитационной физики. Эта всеобъемлющая и энциклопедическая книга написана своеобразным языком, который вам либо понравится, либо нет. — Шон М. Кэрролл

#гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
2👍2716🔥10🤷‍♂11🤩1
📚_Гравитация_3_тома_Мизнер_Ч_,_Торн_К_,_Уилер_Дж.zip
25.1 MB
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

«Гравитация» — учебник по общей теории относительности Альберта Эйнштейна, написанный Чарльзом У. Мизнером, Кипом С. Торном и Джоном Арчибальдом Уилером. Первоначально он был опубликован издательством W. H. Freeman and Company в 1973 году и переиздан издательством Princeton University Press в 2017 году. Его часто сокращённо называют MTW (по фамилиям авторов). Несмотря на то, что этот учебник нельзя назвать лучшим вводным пособием, поскольку его объём может ошеломить новичка, и несмотря на то, что некоторые его части уже устарели, по состоянию на 1998 год он оставался ценным источником информации для аспирантов и исследователей.

После краткого обзора специальной теории относительности и плоского пространства-времени мы переходим к физике искривлённого пространства-времени и рассматриваем многие аспекты общей теории относительности, в частности уравнения поля Эйнштейна и их следствия, экспериментальные подтверждения и альтернативы общей теории относительности. В книгу включены исторические фрагменты, в которых кратко изложены идеи, приведшие к созданию теории Эйнштейна. В заключение автор задаётся вопросом о природе пространства-времени и предлагает возможные направления исследований. Несмотря на подробное изложение линеаризованной гравитации, одна тема осталась за рамками — гравитоэлектромагнетизм. Упоминается квантовая механика, но квантовая теория поля в искривлённом пространстве-времени и квантовая гравитация не рассматриваются.

Рассматриваемые темы в целом разделены на два «направления»: первое содержит основные темы, а второе — более сложные. Первое направление можно изучать независимо от второго. Основной текст дополнен блоками с дополнительной информацией, которые можно пропустить без потери целостности восприятия. Для комментирования основного текста также используются примечания на полях.

Математика, в первую очередь тензорное исчисление и дифференциальные формы в искривлённом пространстве-времени, рассматривается по мере необходимости. Ближе к концу книги также приводится вводная глава о спинорах. В книге есть множество иллюстраций сложных математических идей, таких как альтернативные полилинейные формы, параллельный перенос и ориентация гиперкуба в пространстве-времени. Для практики читателю предлагаются математические упражнения и физические задачи. #гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
👍38🔥3112🤩2🤝2🤯1😍1
📱 Гидрогеновая пушка: как сделать импульсный ускоритель из батареек, воды и искры?

Сегодня разберем одну безумную, на первый взгляд, идею, которая на деле — чистый закон сохранения энергии.

Представьте: у вас есть две емкости. В первой — соленая вода и два электрода (те самые угольные стержни от солевых батареек), к которым подключен источник тока. Идет электролиз: на катоде бурно выделяется газообразный водород (H₂), на аноде — кислород (O₂).

Мы аккуратно собираем этот гремучий газ (особенно важен именно водород) и направляем его во вторую емкость — простейшую камеру сгорания. К ней присоединена ствол-трубка, в которую вложен «заряд» — например, легкая ягода или арахис в скорлупе. В камере встроен пьезоэлемент от зажигалки.

Дальше — дело техники: нажимаем на пьезоэлемент → проскакивает искра → происходит моментальное сгорание водорода по реакции: 2H₂ + O₂ → 2H₂O + ОГРОМНАЯ энергия Q.
Подробнее о том что происходит в видео.

📱 Physics.Math.Code на youtube

#физика #эксперимент #наука #химия #водород #электролиз #оружие #безопасность #гидроген #образование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39🔥2086
Media is too big
VIEW IN TELEGRAM
🔄 Вращение без касания: как газы «передают» движение?
[Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук.]

Вы когда-нибудь замечали, что если быстро покрутить один предмет, рядом стоящий легкий объект может тоже прийти в движение? Это вязкость газов. В видео классический опыт с двумя дисками.

Суть эксперимента: два легких диска (например, бумажных или картонных) подвешены на одной оси на минимальном расстоянии друг от друга. Один диск (нижний) мы раскручиваем, второй (верхний) — просто висит неподвижно.
Проходит время, и верхний диск... начинает вращаться. Медленно, вслед за нижним. Расположение дисков не влияет.

Физика процесса: главный двигатель здесь — вязкость (внутреннее трение) газа.
▪️ 1. Слои газа. Воздух не является абсолютно «жидким». Он состоит из молекул. Когда нижний диск вращается, он увлекает за собой прилегающий к нему слой воздуха (молекулы «прилипают» к поверхности, это условие называется «прилипание»).
▪️ 2. Передача импульса. Вращающийся слой воздуха начинает сталкиваться с вышележащим, неподвижным слоем. Быстрые молекулы передают часть своего импульса медленным соседям.
▪️ 3. Эстафета. Этот процесс повторяется от слоя к слою. Импульс передается вверх, словно по цепочке.
▪️ 4. Верхний диск. Когда возбуждение доходит до верхнего диска, поток воздуха начинает толкать его. Диск раскручивается.

Воздух сопротивляется сдвигу слоев. Именно это сопротивление и называется вязкостью. Если бы воздух был «идеальной» жидкостью (невязкой), верхний диск никогда бы не сдвинулся с места.
▫️ Центробежная сила здесь ни при чем. Работает перенос количества движения от слоя к слою (молекулярная диффузия импульса).
▫️ Закон Бернулли здесь тоже не играет роли. Это чистое внутреннее трение.

Вязкость газов мала (по сравнению с маслом или медом), но она есть. Именно благодаря ей ветер колышет листья, а мы можем размешивать сахар в чае — жидкий слой передает движение дальше. #physics #science #физика #гидродинамика #аэродинамика #вихри #тор #математика #техника #историянауки

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29🔥128🤩5❤‍🔥3
📚 Подборка книг по Астрономии, Астрофизике, Космосу

💾 Скачать книги

Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.

Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП)

💡 Physics.Math.Code // @physics_lib
👍2710🔥6💯3😍2
📚_Подборка_книг_по_Астрономии,_Астрофизике,_Космосу.zip
650.5 MB
📚 Подборка книг по Астрономии, Астрофизике, Космосу

📔 Черные дыры, белые карлики и нейтронные звезды (в двух частях) [1985] Шапиро С., Тьюколски С
📕 Нейтронные звезды и пульсары [1973] Дайсон Ф., Тер Хаар Д.
📗 Астрофизика нейтронных звезд [1987] Липунов Владимир Михайлович
📘 Небо и телескоп [2019] Сурдин В.Г.
📙 Галактики [2013-2019] Сурдин В.Г.
📓 Релятивистская астрофизика и физическая космология [2011] Бисноватый-Коган Г.С.
📒 Теоретическая астрофизика [1952] Амбарцумян В.А.
📕Нейтринная астрофизика [1993] Бакал Дж.
📗 Книга для чтения по астрономии. Астрофизика [1988] Дагаев М.М., Чаругин В.М.
📘 Солнечная система [2017] Сурдин В.Г.
📙 Звёзды [2009] Сурдин В.Г.

Теоретическая астрофизика есть наука, которая изучает и объясняет физические явления, происходящие в небесных телах, на основе законов физики. При этом теоретическая астрофизика широко пользуется математическим аппаратом, который, однако, играет только вспомогательную роль.
Теоретическая астрофизика является молодой и весьма быстро развивающейся наукой. Но её успехи уже сейчас имеют большое значение для всех отраслей астрономии и для многих отраслей физики.

💡 Physics.Math.Code // @physics_lib
7👍4024🔥12🤩5💯2🤝1🗿1
Media is too big
VIEW IN TELEGRAM
🦾 Связь сингулярности с самым маленьким промышленным роботом-манипулятором ⚙️

Хотя робот размером примерно с человеческую руку, его эффективное декартово рабочее пространство удивительно велико. В этом видео показано, как специальный алгоритм управления сингулярностями позволяет манипулятору плавно преодолевать кинематические сингулярности, в полной мере используя преимущества своего рабочего пространства, сохраняя при этом точное управление и динамическую стабильность.

Робот создан специально для автоматизации высокого уровня в микроэлектронике, полупроводниках, фотонике, медицинских приборах, передовых лабораторных процессах и аналогичных областях, где решающее значение имеют точность на микронном уровне и чрезвычайно малые габариты.

👨🏻‍💻 Алгоритм обработки сингулярностей (singularity-handling algorithm) в робототехнике — это метод управления манипулятором, который учитывает сингулярные конфигурации, при которых матрица Якоби теряет ранг, что приводит к потере управляемости. Цель — минимизировать влияние сингулярностей, например, избежать непредсказуемых движений, потери контроля или повреждения системы.

Сингулярность возникает, когда две или более оси манипулятора становятся выровненными, что приводит к потере одной или более степеней свободы. Некоторые типы сингулярностей:
1. Сингулярности запястья — когда две оси в запястье робота становятся выровненными, что теряет одну степень свободы.
2. Сингулярности локтя — возникают, когда рука робота полностью вытянута, из-за чего запястье лежит в той же плоскости, что и второй и третий сочленения.
3. Сингулярности плеча — возникают, когда запястье робота выравнивается с основанием, что заставляет первые и четвёртые сочленения пытаться повернуть на 180 градусов на лету.

💠 Алгоритмы обработки сингулярностей могут включать:

▪️ Выявление сингулярных конфигураций. Например, анализ детерминанта матрицы Якоби — если он равен нулю, матрица сингулярна.
▪️ Корректировку конфигурации при обнаружении сингулярности. Например, для граничных сингулярностей алгоритм изменяет вход управления, чтобы вернуть манипулятор из сингулярной прямой позы. Для внутренних сингулярностей алгоритм управляет манипулятором с помощью движения в нулевом пространстве.
▪️ Минимизацию резких движений на границах сингулярных регионов. Например, для некоторых типов сингулярностей в управление в нулевом пространстве интегрируют контроль демпфирования, чтобы минимизировать резкие движения.

Некоторые примеры реализации алгоритма в робототехнике:

▫️ Алгоритм на основе контроля в оперативном пространстве для антропоморфных манипуляторов с шестью степенями свободы. Для граничных сингулярностей алгоритм модифицирует вход управления, для внутренних — управляет манипулятором с помощью движения в нулевом пространстве.

▫️ Метод на основе виртуальных избыточных сочленений для манипулятора PUMA 560. В матрицу Якоби вводят виртуальные избыточные сочленения, чтобы поддерживать ранг матрицы при возникновении сингулярности.

▫️ Метод отслеживания траектории с учётом сингулярных положений на основе генетических алгоритмов. Позволяет минимизировать ошибки и эффективно избегать критических состояний за счёт глобальной оптимизации управляющих параметров.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7932🔥20🤯8🤝2
🚀Сборная России представит страну на Международной космической олимпиаде в Пекине

Международная инженерно-космическая олимпиада Global Future Space Scholars Meet (GFSSM) для школьников пройдет в Пекине 13-17 августа в девятый раз. Это одна из крупнейших мировых олимпиад. Наша сборная впервые представит страну и встретится с командами из более чем 15 стран, включая США, Китай и Великобританию.

За отбор и подготовку национальной сборной отвечает Центральный университет, который стал единственной российской аккредитованной площадкой, в партнерстве с Роскосмосом и Т-Технологиями (Т-Банк).

▪️Главной темой девятого сезона GFSSM станет «Demeter 2095: космическая станция по добыче ресурсов в глубоком космосе (Deep Space Resource Hub)».
▪️На финальном этапе школьникам предстоит объединиться в международные команды, чтобы за 24 часа разработать проект крупного промышленного космического города в поясе астероидов.
▪️Жюри олимпиады оценит инженерную и научную логику проекта, реалистичность решений, навыки командной работы, а также защиту проекта и ответы на вопросы.

«В этом году нам предстоит подготовить школьников для выполнения сложнейших заданий от ведущих космических организаций. Национальная сборная должна продемонстрировать не только технические решения, но и бизнес-ориентированность и жизнеспособность своих проектов. Мы уверены, что совместная работа с экспертами Т-Технологий и Роскосмоса позволит команде школьников с достоинством представить Россию в мировом космическом сообществе», — комментирует ректор Центрального университета Евгений Ивашкевич.


Отбор открыт до 26 февраля. Принять участие могут школьники с 14 лет с опытом участия в олимпиадах, соревнованиях и проектных программах в области технологий, инженерии и космической тематики. #physics #физика #задачи #наука #образование #science #космос #олимпиады

💡 Physics.Math.Code // @physics_lib
🔥32👍117🤔3😍3👨‍💻2🤷‍♂1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ С чего начать моделирование электрических полей?

Задумывались ли вы, как «увидеть» невидимое? Электрическое поле окружает нас повсюду, от розетки до экрана смартфона. Давайте разберемся, как смоделировать его для точечных зарядов и сложных поверхностей и получить эти завораживающие картинки силовых линий и эквипотенциалей.

1. Фундамент: Главные Уравнения
▪️ Закон Кулона для точечного заряда: F = k * (q₁ * q₂) / r² . Но для поля удобнее работать с напряженностью E = F / q.
▪️ Принцип суперпозиции: Поле системы зарядов — это просто векторная сумма полей от каждого заряда в отдельности. Это наше главное оружие в моделировании.

2. Силовые Линии и Эквипотенциали
Поле можно описывать по-разному, и это ключ к красивой визуализации.
▪️Силовые линии (Графическое отображение напряженности E):
— Воображаемые линии, касательные к которым в каждой точке совпадают с вектором E.
— Свойства: Начинаются на «+» зарядах, заканчиваются на «-» или уходят в бесконечность. Никогда не пересекаются!
— Густота линий пропорциональна величине напряженности.
▪️Эквипотенциальные поверхности (Графическое отображение потенциала φ):
— Что это? Поверхности, где потенциал постоянен (φ = const).
— Свойства: Всегда перпендикулярны силовым линиям. Работа по перемещению заряда вдоль такой поверхности равна нулю.

3. Как Строить Уравнения?
Для точечного заряда q в точке (x₀, y₀):
— Потенциал: φ(x, y) = k * q / sqrt( (x - x₀)² + (y - y₀)² )
— Вектор напряженности E: Eₓ = -∂φ/∂x, Eᵧ = -∂φ/∂y (это просто частные производные, градиент со знаком минус).
А как получить уравнение силовой линии? Это уже сложнее. Силовая линия — это кривая, которая в каждой точке направлена вдоль E. Математически это решается через дифференциальное уравнение: dx / Eₓ(x, y) = dy / Eᵧ(x, y). Решая его (часто численно!), мы получаем траектории для наших визуализаций.

4. Инструменты для Моделирования и Визуализации
▪️Python — король научной визуализации: Библиотеки: matplotlib, numpy, scipy.
▪️Как: Задаете сетку точек (x, y), для каждой считаете Eₓ и Eᵧ (суммируя вклады от всех зарядов). Затем:
— Для силовых линий: используйте matplotlib.streamplot
— Для эквипотенциалей: matplotlib.contour или contourf для потенциала φ.

🖥 Простой пример кода для двух зарядов:
import numpy as np
import matplotlib.pyplot as plt

# Создаем сетку
x = np.linspace(-2, 2, 100)
y = np.linspace(-2, 2, 100)
X, Y = np.meshgrid(x, y)

# Задаем заряды (q, x, y)
charges = [(1, -0.5, 0), (-1, 0.5, 0)]

# Вычисляем полные Eₓ и Eᵧ на сетке
Ex = np.zeros(X.shape)
Ey = np.zeros(Y.shape)
k = 9e9
for q, xq, yq in charges:
R = np.sqrt((X - xq)**2 + (Y - yq)**2)
Ex += k * q * (X - xq) / R**3
Ey += k * q * (Y - yq) / R**3

# Рисуем силовые линии
plt.streamplot(X, Y, Ex, Ey, color='blue', linewidth=1, density=2)
plt.show()

Готовые симуляторы:
— PhET Interactive Simulations (отлично для начального понимания).
— Falstad's E&M Simulator (очень наглядно).
— Comsol Multiphysics, Ansys — для серьезного моделирования сложных поверхностей.

🔴 А что с Крупными Заряженными Поверхностями? Здесь принцип суперпозиции остается, но суммирование становится интегрированием. Каждую поверхность разбиваете на маленькие точечные заряды dq и интегрируете их вклад в поле. На практике для сложных форм это почти всегда делается численными методами (например, методом конечных элементов), которые и используют пакеты вроде Comsol. Начните с Python и пары точечных зарядов. Поймите связь между φ и E, научитесь строить streamplot и contour. #электричество #физика #моделирование #визуализация #python #наука #образование #электрическоеполе #программирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3087👍1