This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Причина гидростатического парадокса состоит в том, что по закону Паскаля жидкость давит не только на дно, но и на стенки сосуда. Если стенки сосуда вертикальные, то силы давления жидкости на его стенки направлены горизонтально и не имеют вертикальной составляющей. Сила давления жидкости на дно сосуда в этом случае равна весу жидкости в сосуде. Если же сосуд имеет наклонные стенки, давление жидкости на них имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда, поэтому он и отличается от давления на дно.
В 1648 году парадокс продемонстрировал Блез Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малого диаметра трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.
Похожий кажущийся парадокс возникает при рассмотрении закона Архимеда. Согласно распространённой формулировке закона Архимеда, на погружённое в воду тело действует выталкивающая сила, равная весу воды, вытесненной этим телом. Из такой формулировки можно сделать неверное умозаключение, что тело не сможет плавать в сосуде, не содержащем достаточное количество воды для вытеснения. Однако на практике тело может плавать в резервуаре с таким количеством воды, масса которой меньше массы плавающего тела. Это возможно в ситуации, когда резервуар лишь ненамного превышает размеры тела. Например, когда корабль стоит в тесном доке, он остаётся на плаву точно так же, как в открытом океане, хотя масса воды между кораблём и стенками дока может быть меньше, чем масса корабля. Объяснение парадокса заключается в том, что архимедова сила создаётся гидростатическим давлением, которое зависит не от веса воды, а только от высоты её столба. Как в гидростатическом парадоксе на дно сосуда действует сила весового давления воды, которая может быть больше веса самой воды в сосуде, так и в вышеописанной ситуации давление воды на днище корабля может создавать выталкивающую силу, превышающую вес этой воды. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Сравнение графиков: Декартовы координаты (Cartesian coordinates) и полярные координаты
#математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry
💡 Physics.Math.Code // @physics_lib
#математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Плазменный тороид — портал для входа в другое измерение ⚡️
#физика #gif #электродинамика #магнетизм #опыты #physics #магнетизм
💡 Physics.Math.Code // @physics_lib
#физика #gif #электродинамика #магнетизм #опыты #physics #магнетизм
💡 Physics.Math.Code // @physics_lib
Forwarded from Репетитор IT mentor
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
💧 Принцип работы гидравлического пресса
Принцип работы гидравлического пресса основан на законе Паскаля. 12 Он гласит, что давление, производимое в одной части замкнутой жидкости, передаётся без изменений во все направления. Работа гидравлического пресса происходит следующим образом:
▪️ Прессуемый материал укладывают на платформу большого поршня.
▪️ С помощью малого поршня создают большое дополнительное давление на жидкость.
▪️ Согласно закону Паскаля, давление передаётся без изменений в каждую точку жидкости, находящейся в цилиндрах. Давление такой же величины будет действовать на поршень большого диаметра.
▪️ Так как площадь большого поршня больше площади малого, сила, которая действует на большой поршень, будет больше силы, действующей на малый поршень.
▪️ Под действием этой силы поршень большого диаметра с расположенным на нём телом будет подниматься вверх, пока оно не окажется сжатым между поршнем и верхней неподвижной платформой.
▪️ Повторным движением поршня малой площади жидкость перекачивают из малого цилиндра в большой. Для этого малый поршень поднимают, открывая клапан. В образующееся пространство под малым поршнем из-за создаваемого вакуума засасывается жидкость. При опускании малого поршня жидкость, давя на клапан, его закрывает, открывая при этом клапан. Открывающийся клапан даёт возможность жидкости перетечь в большой сосуд.
🔩 Гидравлический пресс — это простейшая гидравлическая машина, предназначенная для создания значительных сжимающих усилий. Ранее назывался «пресс Брама», так как изобретён и запатентован Джозефом Брама в 1795 году. Гидравлический пресс состоит из двух сообщающихся сосудов-цилиндров с поршнями разного диаметра. Цилиндр заполняется водой, маслом или другой подходящей жидкостью. По закону Паскаля давление в любом месте неподвижной жидкости одинаково по всем направлениям и одинаково передается по всему объёму. Силы, действующие на поршни, пропорциональны площадям этих поршней. Поэтому выигрыш в силе, создаваемый идеальным гидравлическим прессом, равен отношению площадей поршней. Гидравлический пресс нашёл применение во многих отраслях промышленности от изготовления деталей (штамповки) до прессовки мусора в рабочей камере мусоровоза. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика
💡 Physics.Math.Code // @physics_lib
Принцип работы гидравлического пресса основан на законе Паскаля. 12 Он гласит, что давление, производимое в одной части замкнутой жидкости, передаётся без изменений во все направления. Работа гидравлического пресса происходит следующим образом:
▪️ Прессуемый материал укладывают на платформу большого поршня.
▪️ С помощью малого поршня создают большое дополнительное давление на жидкость.
▪️ Согласно закону Паскаля, давление передаётся без изменений в каждую точку жидкости, находящейся в цилиндрах. Давление такой же величины будет действовать на поршень большого диаметра.
▪️ Так как площадь большого поршня больше площади малого, сила, которая действует на большой поршень, будет больше силы, действующей на малый поршень.
▪️ Под действием этой силы поршень большого диаметра с расположенным на нём телом будет подниматься вверх, пока оно не окажется сжатым между поршнем и верхней неподвижной платформой.
▪️ Повторным движением поршня малой площади жидкость перекачивают из малого цилиндра в большой. Для этого малый поршень поднимают, открывая клапан. В образующееся пространство под малым поршнем из-за создаваемого вакуума засасывается жидкость. При опускании малого поршня жидкость, давя на клапан, его закрывает, открывая при этом клапан. Открывающийся клапан даёт возможность жидкости перетечь в большой сосуд.
🔩 Гидравлический пресс — это простейшая гидравлическая машина, предназначенная для создания значительных сжимающих усилий. Ранее назывался «пресс Брама», так как изобретён и запатентован Джозефом Брама в 1795 году. Гидравлический пресс состоит из двух сообщающихся сосудов-цилиндров с поршнями разного диаметра. Цилиндр заполняется водой, маслом или другой подходящей жидкостью. По закону Паскаля давление в любом месте неподвижной жидкости одинаково по всем направлениям и одинаково передается по всему объёму. Силы, действующие на поршни, пропорциональны площадям этих поршней. Поэтому выигрыш в силе, создаваемый идеальным гидравлическим прессом, равен отношению площадей поршней. Гидравлический пресс нашёл применение во многих отраслях промышленности от изготовления деталей (штамповки) до прессовки мусора в рабочей камере мусоровоза. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
B = B(t), Ф = B⋅S, ε = - dФ/dt
). Вихревые токи создают свои собственные магнитные поля, которые направлены противоположно магнитному полю магнита (по правилу Ленца). В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей (маятник Вальтенхофена). 📝 Некоторые свойства вихревых токов:
▪️Могут использоваться для левитации токопроводящих объектов, движения или интенсивного торможения.
▪️Могут иметь нежелательные эффекты, например потери мощности в трансформаторах.
▪️Из-за сопротивления материала вихревые токи нагревают его, преобразуя электрическую энергию в тепловую.
🧲 Электромагнитное торможение колебаний маятника
🔥 Индукционный нагрев
💫 «Гроб Мухаммеда»
🧲 Как работают трансформаторы?
⚡️ Основные физические понятия электродинамики (Леннаучфильм)
✨ Взаимодействие зарядов. Электростатическая индукция
💫 Исследование электрических полей. Опыт по физике
⚡️ Уравнения Максвелла ✨
⚙️ Электромагнитная подвеска 🧲
Пример применения вихревых токов — отделение алюминиевых банок от других металлов в вихретоковом сепараторе. Чёрные металлы цепляются за магнит, а алюминий (и другие цветные проводники) отталкиваются от магнита. С очень сильным ручным магнитом, например, сделанным из неодима, можно легко наблюдать очень похожий эффект, быстро проведя магнитом по монете с небольшим промежутком. В зависимости от силы магнита, идентичности монеты и расстояния между магнитом и монетой, можно заставить монету протолкнуться немного впереди магнита — даже если монета не содержит магнитных элементов. Другой пример — это падение сильного магнита в медной трубке — магнит падает очень медленно.
В сверхпроводнике поверхностные вихревые токи точно нейтрализуют поле внутри проводника, поэтому магнитное поле не проникает через проводник. Поскольку энергия не теряется в сопротивлении, вихревые токи, возникающие при приближении магнита к проводнику, сохраняются даже после того, как магнит находится в неподвижном состоянии, и могут точно уравновесить силу тяжести, допуская магнитную левитацию. Сверхпроводники также демонстрируют отдельное по своей сути квантово-механическое явление, называемое эффектом Мейснера, при котором любые силовые линии магнитного поля, присутствующие в материале, когда он становится сверхпроводящим, вытесняются, таким образом, магнитное поле в сверхпроводнике всегда равно нулю. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Сборник_задач_по_математике_для_конкурсных_экзаменов_во_втузы_1969.pdf
28.1 MB
📙 Сборник задач по математике для конкурсных экзаменов во втузы [1969] Сканави М.И.
Сборник задач по математике является пособием для поступающих в высшие учебные заведения и одновременно имеет целью оказать помощь кафедрам высшей математики втузов при доставлении материалов для письменных и устных вступительных экзаменов. Все задачи первых трех частей Сборника (алгебра, геометрия, тригонометрия) разбиты на три группы по уровню их сложности. Четвертая часть предназначена для устных экзаменов. Решение всех имеющихся в сборнике 4000 задач и примеров не требует знаний, выходящих за рамки программы вступительных экзаменов.
В предлагаемом сборнике лица, готовящиеся к поступлению во втузы, найдут разнообразные задачи из всех разделов элементарной математики. Все задачи, рекомендуемые для письменных экзаменов, разделены на три группы (А, Б и В) в зависимости от степени их трудности. Ясно, что такое разделение имеет условный характер. Тем не менее авторы считают, что умение решать задачи из группы А должно определить уровень подготовки поступающих, минимально необходимый для получения удовлетворительной оценки по' математике на вступительных экзаменах в высшие технические учебные заведения. . Успешное решение задач из группы Б требует более прочного усвоения программы, а в группе В собраны задачи, решить которые смогут те, кто глубоко и обстоятельно изучил элементарную математику в её теоретической и практической частях и достаточно хорошо владеет навыками логического мышления. Задачи и примеры для устных экзаменов по степени трудности не распределены. #математика #math #задачи #алгебра #геометрия
💡 Physics.Math.Code // @physics_lib
Сборник задач по математике является пособием для поступающих в высшие учебные заведения и одновременно имеет целью оказать помощь кафедрам высшей математики втузов при доставлении материалов для письменных и устных вступительных экзаменов. Все задачи первых трех частей Сборника (алгебра, геометрия, тригонометрия) разбиты на три группы по уровню их сложности. Четвертая часть предназначена для устных экзаменов. Решение всех имеющихся в сборнике 4000 задач и примеров не требует знаний, выходящих за рамки программы вступительных экзаменов.
В предлагаемом сборнике лица, готовящиеся к поступлению во втузы, найдут разнообразные задачи из всех разделов элементарной математики. Все задачи, рекомендуемые для письменных экзаменов, разделены на три группы (А, Б и В) в зависимости от степени их трудности. Ясно, что такое разделение имеет условный характер. Тем не менее авторы считают, что умение решать задачи из группы А должно определить уровень подготовки поступающих, минимально необходимый для получения удовлетворительной оценки по' математике на вступительных экзаменах в высшие технические учебные заведения. . Успешное решение задач из группы Б требует более прочного усвоения программы, а в группе В собраны задачи, решить которые смогут те, кто глубоко и обстоятельно изучил элементарную математику в её теоретической и практической частях и достаточно хорошо владеет навыками логического мышления. Задачи и примеры для устных экзаменов по степени трудности не распределены. #математика #math #задачи #алгебра #геометрия
💡 Physics.Math.Code // @physics_lib
Сейчас информация для тех, кто еще учится в вузе
Мы собрали большое комьюнити умных и образованных людей, среди которых точно есть те, кому нравится обучать точным наукам и программированию. И на своём опыте знаю, чего стоит поиск учеников, особенно если нет ресурсов, какими обладают онлайн-школы. А так как я придерживаюсь стратегии win-win, с радостью готов поделиться ресурсом, который поможет вам найти учеников уже сейчас:
Последний в этом году 3-х дневный концентрат от репетитора и студента факультета компьютерных наук из ВШЭ
За 5 лет репетиторства он разработал систему, которой пользуются все начинающие репетиторы, а действующие с её помощью сокращают время работы и увеличивают доход.
Его советам точно можно доверять. Не упустите эту возможность учиться у лучших в своем деле.
УЧАСТВОВАТЬ
Мы собрали большое комьюнити умных и образованных людей, среди которых точно есть те, кому нравится обучать точным наукам и программированию. И на своём опыте знаю, чего стоит поиск учеников, особенно если нет ресурсов, какими обладают онлайн-школы. А так как я придерживаюсь стратегии win-win, с радостью готов поделиться ресурсом, который поможет вам найти учеников уже сейчас:
Последний в этом году 3-х дневный концентрат от репетитора и студента факультета компьютерных наук из ВШЭ
За 5 лет репетиторства он разработал систему, которой пользуются все начинающие репетиторы, а действующие с её помощью сокращают время работы и увеличивают доход.
Его советам точно можно доверять. Не упустите эту возможность учиться у лучших в своем деле.
УЧАСТВОВАТЬ
This media is not supported in your browser
VIEW IN TELEGRAM
➰ Торический узел — специальный вид узлов, лежащих на поверхности незаузлённого тора в ℝ³. Торическое зацепление — зацепление, лежащее на поверхности тора. Каждый торический узел определяется парой взаимно простых целых чисел p и q. Торическое зацепление возникает, когда p и q не взаимно просты. Торический узел является тривиальным тогда и только тогда, когда либо p, либо q равны 1 или -1. Простейшим нетривиальным примером является (2,3)-торический узел, известный также как трилистник.
Обычно используется соглашение, что (p, q) — торический узел вращается q раз вокруг оси тора и p раз вокруг оси вращения тора.
(p, q) — торический узел может быть задана параметризацией:
Он лежит на поверхности тора, задаваемого формулой (r - 2)² + z² = 1 (в цилиндрических координатах).
Параметризации могут быть другие, потому что узлы определены с точностью до непрерывной деформации. #gif #геометрия #физика #математика #math #geometry #алгебра #maths
📱 Анимация параметрической кривой в 3D декартовой системе координат с помощью Python
💡 Physics.Math.Code // @physics_lib
Обычно используется соглашение, что (p, q) — торический узел вращается q раз вокруг оси тора и p раз вокруг оси вращения тора.
(p, q) — торический узел может быть задана параметризацией:
x = r⋅cos(p⋅φ)
y = r⋅sin(p⋅φ)
z = - sin(q⋅φ)
где r = cos(q⋅φ) + 2 и 0 < φ < 2π.
Он лежит на поверхности тора, задаваемого формулой (r - 2)² + z² = 1 (в цилиндрических координатах).
Параметризации могут быть другие, потому что узлы определены с точностью до непрерывной деформации. #gif #геометрия #физика #математика #math #geometry #алгебра #maths
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
• infosec - это один из самых ламповых каналов по информационной безопасности, где говорят об истории ИТ, публикуют актуальные новости и пишут технический материал на разные темы:
- Что из себя представляет официально взломанный iPhone от Apple?
- Кому и для чего выдавалось разрешение на ношение сотового телефона?
- Бесплатные курсы для ИБ специалистов на различные темы;
- Бесплатный бот, который проверит файлы на предмет угроз более чем 70 антивирусами одновременно.
• Присоединяйся, у нас интересно: @it_secur
- Что из себя представляет официально взломанный iPhone от Apple?
- Кому и для чего выдавалось разрешение на ношение сотового телефона?
- Бесплатные курсы для ИБ специалистов на различные темы;
- Бесплатный бот, который проверит файлы на предмет угроз более чем 70 антивирусами одновременно.
• Присоединяйся, у нас интересно: @it_secur
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Пушка Гаусса (англ. Gauss gun, Coil gun, Gauss cannon) — одна из разновидностей электромагнитного ускорителя масс. Названа по фамилии немецкого учёного Карла Гаусса, заложившего основы математической теории электромагнетизма. Следует иметь в виду, что этот метод ускорения масс используется в основном в любительских установках, так как не является достаточно эффективным для практической реализации. По своему принципу работы (создание бегущего магнитного поля) сходна с устройством, известным как линейный двигатель.
Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает электромагнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. В любительских схемах иногда в качестве снаряда используют постоянный магнит, так как с возникающей при этом ЭДС индукции легче бороться. Такой же эффект возникает при использовании ферромагнетиков, но выражен он не так ярко благодаря тому, что снаряд легко перемагничивается (коэрцитивная сила).
Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы большой ёмкости и с высоким рабочим напряжением.
Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить, что возможны разные алгоритмы работы ускоряющих катушек. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM