📙 ASP.NET Core в действии [2024] Эндрю Лок
📙 ASP.NET Core in Action, 3rd Edition [2023] Andrew Lock
💳 Купить RU 💳 Купить EN
💾 Скачать книги
Фреймворк ASP.NET Core предоставляет все необходимое для создания веб-приложений профессионального качества. Благодаря повышающим производительность библиотекам для отрисовки на стороне сервера, безопасным API, простому доступу к данным и многому другому вы потратите свое время на реализацию функциональных возможностей, а не на исследование синтаксиса и отслеживание ошибок. Эта книга — ваш путеводитель. #csharp #c_sharp #aspnet #net #программирование
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
💡 Physics.Math.Code // @physics_lib
📙 ASP.NET Core in Action, 3rd Edition [2023] Andrew Lock
💳 Купить RU 💳 Купить EN
💾 Скачать книги
Фреймворк ASP.NET Core предоставляет все необходимое для создания веб-приложений профессионального качества. Благодаря повышающим производительность библиотекам для отрисовки на стороне сервера, безопасным API, простому доступу к данным и многому другому вы потратите свое время на реализацию функциональных возможностей, а не на исследование синтаксиса и отслеживание ошибок. Эта книга — ваш путеводитель. #csharp #c_sharp #aspnet #net #программирование
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
+79616572047
(СБП) Сбер: +79026552832
(СБП) ЮMoney: 410012169999048
💡 Physics.Math.Code // @physics_lib
ASP_NET_Core_в_действии_2024_Эндрю_Лок_RU+EN.zip
73.1 MB
📙 ASP.NET Core в действии [2024] Эндрю Лок
Эта книга знакомит читателей с основами фреймворка ASP.NET Core, такими как промежуточное ПО, внедрение зависимостей и конфигурация. Автор показывает, как настроить их в соответствии с пользовательскими требованиями. Речь пойдет о том, как добавить аутентификацию и авторизацию в свои приложения, как повысить их безопасность, а так же как развертывать их и осуществлять мониторинг. Рассматривается тестирование приложений с использованием модульных и интеграционных тестов. Основное внимание будет уделено тому, как создавать приложения с отрисовкой на стороне сервера, используя страницы Razor и веб-API, а также контроллеры MVC. В третьем издании показано, как создавать веб-приложения для эксплуатации в промышленном окружении с помощью ASP.NET Core 7.0. Вы будете учиться на практических примерах, содержательных иллюстрациях и коде с подробными пояснениями. В числе новинок: создание минимальных API, обеспечение безопасности API с помощью токенов на предъявителя, WebApplicationBuilder и многое другое. Книга подойдет как тем, кто является новичком в веб-разработке, так и тем, кто уже имеет опыт использования фреймворка ASP.NET.
📙 ASP.NET Core in Action, 3rd Edition [2023] Andrew Lock
The ASP.NET Core web framework delivers everything you need to build professional-quality web applications. With productivity-boosting libraries for server-side rendering, secure APIs, easy data access and more, you’ll spend your time implementing features instead of researching syntax and tracking down bugs. This book is your guide. ASP.NET Core in Action, Third Edition shows you how to create production-grade web applications with ASP.NET Core 7.0. You’ll learn from hands-on examples, insightful illustrations, and nicely explained code. Updated coverage in this Third Edition includes creating minimal APIs, securing APIs with bearer tokens, WebApplicationBuilder, and more.
What's Inside
▪️ Minimal APIs for serving JSON
▪️ Server-side rendering using Razor Pages
▪️ Data access with Entity Framework Core
▪️ Write custom middleware and components
For beginning to intermediate web developers. Examples are in C#.
💡 Physics.Math.Code // @physics_lib
Эта книга знакомит читателей с основами фреймворка ASP.NET Core, такими как промежуточное ПО, внедрение зависимостей и конфигурация. Автор показывает, как настроить их в соответствии с пользовательскими требованиями. Речь пойдет о том, как добавить аутентификацию и авторизацию в свои приложения, как повысить их безопасность, а так же как развертывать их и осуществлять мониторинг. Рассматривается тестирование приложений с использованием модульных и интеграционных тестов. Основное внимание будет уделено тому, как создавать приложения с отрисовкой на стороне сервера, используя страницы Razor и веб-API, а также контроллеры MVC. В третьем издании показано, как создавать веб-приложения для эксплуатации в промышленном окружении с помощью ASP.NET Core 7.0. Вы будете учиться на практических примерах, содержательных иллюстрациях и коде с подробными пояснениями. В числе новинок: создание минимальных API, обеспечение безопасности API с помощью токенов на предъявителя, WebApplicationBuilder и многое другое. Книга подойдет как тем, кто является новичком в веб-разработке, так и тем, кто уже имеет опыт использования фреймворка ASP.NET.
📙 ASP.NET Core in Action, 3rd Edition [2023] Andrew Lock
The ASP.NET Core web framework delivers everything you need to build professional-quality web applications. With productivity-boosting libraries for server-side rendering, secure APIs, easy data access and more, you’ll spend your time implementing features instead of researching syntax and tracking down bugs. This book is your guide. ASP.NET Core in Action, Third Edition shows you how to create production-grade web applications with ASP.NET Core 7.0. You’ll learn from hands-on examples, insightful illustrations, and nicely explained code. Updated coverage in this Third Edition includes creating minimal APIs, securing APIs with bearer tokens, WebApplicationBuilder, and more.
What's Inside
▪️ Minimal APIs for serving JSON
▪️ Server-side rendering using Razor Pages
▪️ Data access with Entity Framework Core
▪️ Write custom middleware and components
For beginning to intermediate web developers. Examples are in C#.
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
⛓️💥 Биметалл — сплав, который представляет собой полосу двух металлов с разным тепловым расширением . Металлы прочно соединены друг с другом (например, спрессованы или соединены поверхностной сваркой). При нагреве или охлаждении металлы по-разному расширяются на разных сторонах ленты. Это приведет к заметному изгибу двухслойной ленты. Слой металла, изготовленный из материала с большим тепловым расширением, называют активным , а слой с меньшим тепловым расширением — пассивным . По материалу активной части различают две основные группы биметаллов:
▪️ из чистого металла или из сплава цветных металлов ( стали и бронзы ).
▪️ из сплава железа с другим цветным металлом.
Видеофильм: Биметаллический листовой прокат [1983]
🔍 Биметалл используется или использовался, например, в следующих устройствах:
▪️ Электромеханический термостат — регулирует температуру, например, в утюге , в комнате, в аквариуме, в бойлере, в кухонной духовке.
▪️ термостатический клапан — механическое регулирование расхода среды в зависимости от температуры (например, поддерживает заданную температуру воды в душе)
▪️ электрический выключатель — нагревается при прохождении электрического тока и размыкает цепь при незначительном превышении номинального значения тока в течение длительного времени
▪️ термоэлектрический предохранитель — состоит из биметаллического контакта, размещенного, например, в обмотке двигателя, который разъединяет и защищает его от повреждения при перегреве.
▪️ термометр — изгиб ленты механически преобразуется в движение руки прибора
▪️ таймер — нагрев проходящим током размыкает электрическую цепь, охлаждение снова замыкает ее; Раньше он в основном использовался для генерации электрических импульсов (например, в классическом выключателе указателей поворота автомобиля)
▪️ реле — биметаллическое, нагревается нагревательной проволокой или элементом и управляет контактом.
▪️ светящийся в темноте стартер люминесцентной лампы — обеспечивает нагрев электродов люминесцентной лампы и вместе с дросселем создает высоковольтный импульс, необходимый для зажигания разряда в люминесцентной лампе
💡 Physics.Math.Code // @physics_lib
▪️ из чистого металла или из сплава цветных металлов ( стали и бронзы ).
▪️ из сплава железа с другим цветным металлом.
Видеофильм: Биметаллический листовой прокат [1983]
🔍 Биметалл используется или использовался, например, в следующих устройствах:
▪️ Электромеханический термостат — регулирует температуру, например, в утюге , в комнате, в аквариуме, в бойлере, в кухонной духовке.
▪️ термостатический клапан — механическое регулирование расхода среды в зависимости от температуры (например, поддерживает заданную температуру воды в душе)
▪️ электрический выключатель — нагревается при прохождении электрического тока и размыкает цепь при незначительном превышении номинального значения тока в течение длительного времени
▪️ термоэлектрический предохранитель — состоит из биметаллического контакта, размещенного, например, в обмотке двигателя, который разъединяет и защищает его от повреждения при перегреве.
▪️ термометр — изгиб ленты механически преобразуется в движение руки прибора
▪️ таймер — нагрев проходящим током размыкает электрическую цепь, охлаждение снова замыкает ее; Раньше он в основном использовался для генерации электрических импульсов (например, в классическом выключателе указателей поворота автомобиля)
▪️ реле — биметаллическое, нагревается нагревательной проволокой или элементом и управляет контактом.
▪️ светящийся в темноте стартер люминесцентной лампы — обеспечивает нагрев электродов люминесцентной лампы и вместе с дросселем создает высоковольтный импульс, необходимый для зажигания разряда в люминесцентной лампе
💡 Physics.Math.Code // @physics_lib
Media is too big
VIEW IN TELEGRAM
🌘 Причины приливов на Земле 🌎
Прилив и отлив — периодические колебания уровня океана или моря, являющиеся результатом воздействия гравитационных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раза больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.
Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации. Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне пригодную для еды пищу.
Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, прили́вные силы, порождаемые Луной, вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не только от величины гравитационного поля, но и от степени его неоднородности, которая уменьшается при увеличении расстояния от источника поля, так что приливная сила обратно пропорциональна кубу расстояния до её источника (тогда как сила тяготения — квадрату). Солнце почти в 400 раз дальше от Земли, чем Луна, поэтому приливные силы, вызываемые солнечным притяжением, оказываются слабее.
Суточное вращение Земли приводит к тому, что в системе отсчёта, связанной с земной поверхностью, по океану бегут по противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся явлениям прилива, чередующимся с явлениями отлива — за счёт взаимодействия с Луной; и ещё две, меньшего размера — за счёт взаимодействия с Солнцем. Итоговая приливная волна представляет собой суперпозицию этих волн.
Взаиморасположение Луны и Солнца относительно Земли периодически меняется, поэтому меняется величина и скорость результирующих приливно-отливных явлений.
Лунный промежуток — это задержка прихода волны, то есть отрезок времени с момента прохождения Луной наивысшего положения над горизонтом или наинизшего положения под горизонтом (то есть пересечения ею небесного меридиана) до момента максимального уровня воды в ходе прилива. #геология #физика #астрономия #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Прилив и отлив — периодические колебания уровня океана или моря, являющиеся результатом воздействия гравитационных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раза больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.
Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации. Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне пригодную для еды пищу.
Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, прили́вные силы, порождаемые Луной, вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не только от величины гравитационного поля, но и от степени его неоднородности, которая уменьшается при увеличении расстояния от источника поля, так что приливная сила обратно пропорциональна кубу расстояния до её источника (тогда как сила тяготения — квадрату). Солнце почти в 400 раз дальше от Земли, чем Луна, поэтому приливные силы, вызываемые солнечным притяжением, оказываются слабее.
Суточное вращение Земли приводит к тому, что в системе отсчёта, связанной с земной поверхностью, по океану бегут по противоположным сторонам земного шара две волны, приводящие в каждой точке океанского побережья к периодическим, два раза в сутки повторяющимся явлениям прилива, чередующимся с явлениями отлива — за счёт взаимодействия с Луной; и ещё две, меньшего размера — за счёт взаимодействия с Солнцем. Итоговая приливная волна представляет собой суперпозицию этих волн.
Взаиморасположение Луны и Солнца относительно Земли периодически меняется, поэтому меняется величина и скорость результирующих приливно-отливных явлений.
Лунный промежуток — это задержка прихода волны, то есть отрезок времени с момента прохождения Луной наивысшего положения над горизонтом или наинизшего положения под горизонтом (то есть пересечения ею небесного меридиана) до момента максимального уровня воды в ходе прилива. #геология #физика #астрономия #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Мы рассмотрим классические головоломки и задачи на разрезания. Одна из них — творческая и посильная большинству, другая, — задача Дьюдени, — очень сложная и служит прелюдией к настоящим математическим проблемам. Еще три задачки решили в качестве разминки и столько же подобрал специально для вас!
🔺 Разбиение Дьюдени:
На какое минимальное число частей необходимо разбить равносторонний треугольник, чтобы из них можно было сложить квадрат? Эта задача была предложена читателям газеты «Дейли мейл» Генри Дьюдени в выпусках от 1 и 8 февраля 1905 года. Среди сотен полученных ответов правильным был всего один: достаточно четырёх частей.
#математика #геометрия #задачи #видеоуроки #научные_фильмы #math #головоломки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
☢️ Физика элементарных частиц — Казаков Д.
Физика элементарных частиц — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Цель этого изучения — понять, как устроен мир неживой природы и установить наиболее общие законы, которые им управляют.
Дмитрий Казаков — доктор физико-математических наук, профессор, член-корреспондент РАН, директор Лаборатории теоретической физики им. Н. Н. Боголюбова Объединенного института ядерных исследований (ОИЯИ). #physics #ядерная_физика #атомная_физика #физика #видеоуроки #лекции #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Физика элементарных частиц — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Цель этого изучения — понять, как устроен мир неживой природы и установить наиболее общие законы, которые им управляют.
Дмитрий Казаков — доктор физико-математических наук, профессор, член-корреспондент РАН, директор Лаборатории теоретической физики им. Н. Н. Боголюбова Объединенного института ядерных исследований (ОИЯИ). #physics #ядерная_физика #атомная_физика #физика #видеоуроки #лекции #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🟡 Профессор Эрик Лейтуэйт формирование будущего - 1972 г. [RU]
🟠 Professor Eric Laithwaite Shaping Things to Come 1972 [EN]
Профессор Эрик Лайтуэйт (1921—1997) из Имперского колледжа Лондона показывает, как учет формы и размера оказал глубокое влияние на конструкцию электромагнитных машин. Это один из серии цветных 16-миллиметровых фильмов, снятых для школ. Все они были изготовлены в "Лаборатории тяжелой электротехники" Эрика Лайтуэйта на факультете электротехники Имперского колледжа Лондона.
#физика #электротехника #гидродинамика #электромагнетизм #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
🟠 Professor Eric Laithwaite Shaping Things to Come 1972 [EN]
Профессор Эрик Лайтуэйт (1921—1997) из Имперского колледжа Лондона показывает, как учет формы и размера оказал глубокое влияние на конструкцию электромагнитных машин. Это один из серии цветных 16-миллиметровых фильмов, снятых для школ. Все они были изготовлены в "Лаборатории тяжелой электротехники" Эрика Лайтуэйта на факультете электротехники Имперского колледжа Лондона.
#физика #электротехника #гидродинамика #электромагнетизм #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
Моторные масла — масла, применяемые главным образом для охлаждения и снижения трения между движущимися деталями поршневых и роторных двигателей внутреннего сгорания.
Все современные моторные масла состоят из базовых масел и улучшающих их свойства присадок. В качестве базовых масел обычно используют дистиллятные и остаточные компоненты различной вязкости (углеводороды), их смеси, углеводородные компоненты полученные гидрокрекингом и гидроизомеризацией, а также синтетические продукты (высокомолекулярные углеводороды, полиальфаолефины, сложные эфиры и другие). Большинство всесезонных масел получают путём загущения маловязкой основы макрополимерными присадками.
Первое в мире моторное масло было запатентовано в 1873 году американским доктором Джоном Эллисом. В 1866 году Эллис изучал свойства сырой нефти в медицинских целях, но обнаружил, что сырая нефть обладает хорошими смазочными свойствами. Эллис залил экспериментальную жидкость в заклинившие клапаны большого V-образного парового двигателя. В результате клапаны освободились и стали двигаться свободнее, а Джон Эллис зарегистрировал бренд Valvoline — первый в мире бренд моторного масла.
Вязкость — одно из важнейших свойств масла, определяющее его применимость в двигателях различных типов. Различают динамическую, кинематическую и техническую вязкость. Динамическая вязкость обусловлена внутренним трением между движущимися слоями масла и измеряется в пуазах (П). Кинематическая вязкость — определяется как отношение динамической вязкости к плотности при той же температуре и измеряется в сантистоксах (сСт). Техническая, или условная вязкость определяется как отношение времени истечения из вискозиметра 200 мл масла, взятого в секундах, ко времени истечения из того же вискозиметра при тех же условиях 200 мл воды. В настоящее время для оценки этого свойства масла как правило используется индекс вязкости, характеризующий пологость кривой зависимости кинематической вязкости масла от температуры. #механика #двс #физика #техника #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Non-rocket spacelaunch — космический запуск, или способ выведения на орбиту, при котором некоторая или вся необходимая скорость и высота достигается без помощи традиционных ракет, запускаемых с земной поверхности. Предложено множество альтернатив ракетам. В некоторых системах, таких как ракетные салазки и воздушный старт, ракета участвует в достижении орбиты, но включается после достижения некой начальной высоты или скорости другим способом.
В стоимости космических проектов транспортировка на орбиту составляет значительную часть бюджета; если её удастся сделать более эффективной, общая стоимость космического полёта сильно уменьшится. На текущий день стоимость запуска килограмма полезной массы с Земли на низкую опорную орбиту западными ракетами лежит в пределах от $10К-25К. Для Ангары-А5 цена запуска 1 кг груза на НОО составляет 2400 $. Поскольку теоретически возможная минимальная стоимость энергии меньше на порядок, возможно значительное снижение стоимости. Для обживания космического пространства, то есть исследования и колонизации космоса, требуются намного более дешёвые методы запуска, а также способ предотвращения серьёзного вреда атмосфере со стороны тысяч, а возможно и миллионов запусков.
🛕 Космическая башня — строение, которое бы достигло внешнего космоса. Чтобы избежать необходимости в транспортном средстве, запускаемом с первой космической скоростью, башня должна возвышаться над границей космоса (выше отметки 100 км — Линия Кармана), но и башня гораздо меньшей высоты могла бы снизить лобовое сопротивление в атмосфере при подъёме. Спутники могут временно вращаться по эллиптическим орбитам, опускающимся до 135 км и ниже, но искажение орбиты, вызывающее вход в плотные слои атмосферы, будет очень быстрым, если только высота позже не будет срочно восстановлена до сотен километров. Если башня, расположенная на экваторе, будет простираться до геосинхронной орбиты на высоте примерно 36 000 км, объекты, выпущенные на такой высоте, могут затем улететь с минимальными затратами энергии и будут находиться на круговой орбите. Однако, башню такой экстремальной высоты невозможно сделать из материалов, существующих в данный момент на Земле. Кроме того, все более низколетящие спутники рано или поздно столкнутся с такой башней (так как плоскость орбиты любого спутника обязательно проходит через центр Земли и следовательно пересекает плоскость экватора). Набросок структуры, достигающей геосинхронной орбиты, впервые был предложен Константином Циолковским, который предложил компрессионную структуру, или «Башню Циолковского». #физика #механика #наука #physics #science #космос #астрономия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#математика #разбор_задач #math #maths #mathematics #олимпиады #геометрия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📚 Сборник задач по общему курсу физики [1976 - 1981] Сивухин Д.В.
В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.
💾 Скачать книги
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
В настоящем издании сборник выходит в пяти книгах, каждая из которых может быть использована самостоятельно:
I. Механика.
II. Термодинамика и молекулярная физика.
III. Электричество.
IV. Оптика.
V. Атомная физика и физика ядра.
💾 Скачать книги
Дмитрий Васильевич Сивухин (1914 — 1988) — советский физик, автор широко известного «Общего курса физики». Кандидат физико-математических наук, профессор МФТИ. Автор статей по гидродинамике, статистической физике, физической оптике, физике плазмы, электродинамике.
Для тех, кто захочет задонать на кофе☕️:
ВТБ:
+79616572047
(СБП) Сбер: +79026552832
(СБП) ЮMoney: 410012169999048
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
📚_Сборник_задач_по_общему_курсу_физики_1976_2006_Сивухин_Д_В_.zip
88.2 MB
📚 Сборник задач по общему курсу физики [1976 - 2006] Сивухин Д.В.
В предлагаемом сборнике задач по физике использован опыт преподавания общего курса физики в МГУ, Московском физико-техническом институте и Московском государственном педагогическом институте им. В.И.Ленина. Сивухин Д.В. Общий курс физики в 5 томах. По степени трудности задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики. Для студентов физических специальностей высших учебных заведений. Составление этого сборника задач было начато на физическом факультете МГУ по инициативе академика С. И. Вавилова. Однако основная работа по составлению Сборника и подготовке его к изданию выполнена под руководством С. Э. Хайкина. В 1949 г. вышло в свет первое издание Сборника в двух частях: I. Механика. Электричество и магнетизм, под редакцией С. Э. Хайкина; II. Оптика. Молекулярная физика и термодинамика. Атомная физика и физика ядра, под редакцией Д. В. Сивухина. С тех пор Сборник переиздавался в 1960 и 1964 гг.
Предлагаемое, четвертое, издание Сборника существенно отличается от всех предшествующих прежде всего по своему объему, так как число задач, включенных в Сборник, увеличено почти вдвое. Обогатилось содержание и повысился уровень задач. По степени трудности, постановки и решения задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики.
💡 Physics.Math.Code // @physics_lib
В предлагаемом сборнике задач по физике использован опыт преподавания общего курса физики в МГУ, Московском физико-техническом институте и Московском государственном педагогическом институте им. В.И.Ленина. Сивухин Д.В. Общий курс физики в 5 томах. По степени трудности задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики. Для студентов физических специальностей высших учебных заведений. Составление этого сборника задач было начато на физическом факультете МГУ по инициативе академика С. И. Вавилова. Однако основная работа по составлению Сборника и подготовке его к изданию выполнена под руководством С. Э. Хайкина. В 1949 г. вышло в свет первое издание Сборника в двух частях: I. Механика. Электричество и магнетизм, под редакцией С. Э. Хайкина; II. Оптика. Молекулярная физика и термодинамика. Атомная физика и физика ядра, под редакцией Д. В. Сивухина. С тех пор Сборник переиздавался в 1960 и 1964 гг.
Предлагаемое, четвертое, издание Сборника существенно отличается от всех предшествующих прежде всего по своему объему, так как число задач, включенных в Сборник, увеличено почти вдвое. Обогатилось содержание и повысился уровень задач. По степени трудности, постановки и решения задачи охватывают широкий диапазон: от самых элементарных до задач, стоящих на уровне оригинальных научных исследований, выполнение которых возможно на основе углубленного знания общего курса физики.
💡 Physics.Math.Code // @physics_lib
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
Издательство: МФТИ
💾 Скачать книги
Для студентов физических специальностей вузов, а также преподавателей высшей и средней школ».
Сборник задач по общему курсу физики [3 книги] [1998-2000]:
▪️ Часть 1: Заикин, Овчинкин, Прут
▪️ Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут
▪️ Часть 3: Овчинкин, Раевский, Ципенюк
Издательство: МФТИ
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Издательство: МФТИ
💾 Скачать книги
Для студентов физических специальностей вузов, а также преподавателей высшей и средней школ».
Сборник задач по общему курсу физики [3 книги] [1998-2000]:
▪️ Часть 1: Заикин, Овчинкин, Прут
▪️ Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут
▪️ Часть 3: Овчинкин, Раевский, Ципенюк
Издательство: МФТИ
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
📚_Сборник_задач_по_общему_курсу_физики_3_книги_1998_2000.zip
136.5 MB
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
Издательство: МФТИ
📕 Часть 1: Заикин, Овчинкин, Прут
Первая часть сборника включает в себя более 1700 задач различной степени трудности. Авторами большей части задач являются преподаватели кафедры общей физики Московского физики технического института. Эти задачи предлагалась студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.
📘 Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут
Вторая часть сборника включает в себя около 1300 задач различной степени трудности. Авторами почти всех задач являются преподаватели кафедры общей физики Московского физико-технического института. Эти задачи предлагались студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.
📗 Часть 3: Овчинкин, Раевский, Ципенюк
Третья часть сборника включает в себя 1235 задач, в основном по квантовой физике атомов и молекул, ядерной физике, физике элементарных частиц, физике излучения, физике твердого тела и низкоразмерных систем. Авторами задач являются преподаватели кафедры общей физики МФТИ.
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Издательство: МФТИ
📕 Часть 1: Заикин, Овчинкин, Прут
Первая часть сборника включает в себя более 1700 задач различной степени трудности. Авторами большей части задач являются преподаватели кафедры общей физики Московского физики технического института. Эти задачи предлагалась студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.
📘 Часть 2: Козел, Лейман, Локшин, Овчинкин, Прут
Вторая часть сборника включает в себя около 1300 задач различной степени трудности. Авторами почти всех задач являются преподаватели кафедры общей физики Московского физико-технического института. Эти задачи предлагались студентам на экзаменах, контрольных работах и студенческих физических олимпиадах.
📗 Часть 3: Овчинкин, Раевский, Ципенюк
Третья часть сборника включает в себя 1235 задач, в основном по квантовой физике атомов и молекул, ядерной физике, физике элементарных частиц, физике излучения, физике твердого тела и низкоразмерных систем. Авторами задач являются преподаватели кафедры общей физики МФТИ.
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
🔴 Широко известна задача о «четырех красках», суть которой заключается в том, чтобы доказать, что для раскраски любой карты так, чтобы никакие две граничащие области не оказались окрашены одинаково, достаточно всего четырех цветов. Считается, что впервые эту проблему сформулировал в 1852 году шотландский студент Френсис Гутри. И с тех пор многие математики тщетно пытались ее разрешить, пока не были представлены простые доказательства с помощью специализированного программного обеспечения.
🟡 Раскраски помогают специалистам сотовой связи в организации зоны покрытий. Для устойчивого сигнала необходимо строго разделять диапазоны частот между соседними базовыми станциями. И тут задача сводится к замощению плоскости шестиугольниками, раскрашенными минимальным количеством цветов.
🔵 Метод раскрасок совместно с теорией графов применяется и в автоматизированном составлении расписания. Это могут быть учебные занятия, работа и прием специалистов в учреждении и т.п. При этом строится граф, вершины которого, например, учебные занятия. В случае, если занятия невозможно провести одновременно (занят один и тот же класс, аудитория, преподаватель), вершины соединяют ребрами. Граф раскрашивают таким образом, чтобы каждая пара соседних вершин была окрашена в разные цвета, а общее количество использованных красок должно быть минимальным. С таким перебором легко справляются современные программы, и на выходе получается готовое расписание.
📜 Суть самого метода состоит в следующем: Раскрасив некоторые ключевые элементы, которые фигурируют в задаче в несколько цветов, исследовать, что будет происходить, если выполнить условия задачи. Присваивая объектам различные цвета (метки) можно получить дополнительные количественные характеристики, которые позволят упростить понимание задачи и зачастую приводят к четкому, лаконичному решению.
#математика #графы #задачи #алгоритмы #math #видеоуроки #лекции #разбор_задач #maths #алгебра #геометрия #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Изопериметри́ческое нера́венство — геометрическое неравенство, связывающее периметр замкнутой кривой на плоскости и площадь участка плоскости, ограниченной этой кривой. Этот термин также используется для различных обобщений данного неравенства. Изопериметрический буквально означает «имеющий тот же самый периметр». В частности, изопериметрическое неравенство утверждает, что при длине L замкнутой кривой и площади A плоской области, ограниченной этой кривой,
4𝝅A ⩽ L²
и это неравенство превращается в равенство тогда и только тогда, когда кривая является окружностью. Целью изопериметрической задачи является поиск фигуры наибольшей возможной площади, граница которой имеет заданную длину. Изопериметрическая задача была обобщена многими путями для других неравенств между характеристиками фигур, множеств, многообразий. К изопериметрической задаче относятся также оценки величин физического происхождения (моменты инерции, жёсткость кручения упругой балки, основная частота мембраны, электростатическая ёмкость и др.) через геометрические характеристики. Например, есть обобщения для кривых на поверхностях и на области в пространствах большей размерности. Возможно, наиболее известным физическим проявлением 3-мерного изопериметрического неравенства является форма капли воды. А именно, капля принимает обычно круглую форму. Поскольку количество воды в капле фиксировано, поверхностное натяжение заставляет каплю принять форму, минимизирующую поверхность капли, а минимальной поверхностью будет сфера.
#математика #разбор_задач #math #maths #mathematics #олимпиады #геометрия
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Есть такой интересный фокус. Люминесцентные лампы могут светится без проводов под ЛЭП (Линия электропередачи). Т.е. лампы дневного света, люминесцентные, которые можно увидеть на потолке в каждом офисе, способны светиться по высоковольтными ЛЭП сами, прямо в руках, без подключений к проводам.
Почему так происходит? Дело в том, что под высоковольтными ЛЭП образуется мощное электрическое поле. Разница потенциалов между проводами и землей очень велика. Электрическое поле начинает действовать на лампу подобно подключению к сети: электроны внутри лампы разгоняются, ионизируют ртутные пары и образуют ультрафиолетовое излучение, преобразовываемое люминофором – мы видим свечение.
Но может ли светится домашняя лампочка от человека, который зарядился от 220 В ?
#физика #разбор_задач #электричество #магнетизм #электродинамика #physics #задачи
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🌀 10 фракталов, которые стоит увидеть
Фрактал (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев.
▪️ В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
▪️ Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.
▪️ Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
▪️ Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
▪️ Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы
💡 Physics.Math.Code // @physics_lib
0:00 — Ковёр Серпинского
0:16 — Дерево Пифагора
0:32 — Дерево Пифагора (версия 2)
0:46 — Красивый фрактал из окружностей
1:10 — Кривая дракона
1:30 — Папоротник Барнсли
1:47 — Вопрос из игры «Что? Где? Когда?»
2:00 — Снежинка Коха
2:10 — Треугольник Серпинсого
2:23 — Множество Кантора
2:40 — Кривая Гильберта
2:50 — Множество Мандельброта
3:15 — Фрактал на основе центроида
Фрактал (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев.
▪️ В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.
▪️ Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться. Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.
▪️ Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
▪️ Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
▪️ Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
🌿 Фракталы: Порядок в хаосе [2008] В поисках скрытого измерения [Fractals. Hunting the Hidden Dimension]
#нелинейная_динамика #теория_хаоса #математика #дискретная_математика #math #gif #фракталы
💡 Physics.Math.Code // @physics_lib
📚 Курс теоретической механики. В 2 томах [1979] Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.
💾 Скачать книги
▪️Николай Васильевич Бутенин ( 1914 — 24 апреля 1995 ) — доктор физико-математических наук, профессор, специалист в области ракетной и космической техники, теоретической и прикладной механики.
▪️Лунц Яков Львович — учёный в области теоретической механики.
▪️Давид Рахмильевич Меркин (1912—2009) — советский учёный-механик, доктор физико-математических наук, профессор; автор многих научных работ и учебников; ученик Наума Ильича Идельсона.
Для студентов физических специальностей вузов, а также преподавателей высшей и средней школ.
#физика #механика #динамика #подборка_книг #кинематика #physics #статика #mechanics #теоретическая_механика #термех #динамика
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
▪️Николай Васильевич Бутенин ( 1914 — 24 апреля 1995 ) — доктор физико-математических наук, профессор, специалист в области ракетной и космической техники, теоретической и прикладной механики.
▪️Лунц Яков Львович — учёный в области теоретической механики.
▪️Давид Рахмильевич Меркин (1912—2009) — советский учёный-механик, доктор физико-математических наук, профессор; автор многих научных работ и учебников; ученик Наума Ильича Идельсона.
Для студентов физических специальностей вузов, а также преподавателей высшей и средней школ.
#физика #механика #динамика #подборка_книг #кинематика #physics #статика #mechanics #теоретическая_механика #термех #динамика
💡 Physics.Math.Code // @physics_lib
📚_Курс_теоретической_механики_2_книги_1979.zip
8.4 MB
📚 Курс теоретической механики. В 2 томах [1979] Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.
📙 Том 1. В книге изложены статика и кинематика. Приведено большое количество примеров и задач, имеющих прикладное значение. Кроме традиционного материала, книга содержит некоторые разделы, выходящие за пределы программы, как, например, определение натяжения тяжелй подвешенной нити, определение реакций упругих опор твердого тела, криволинейные координаты.
📙 Том 2. В книге изложены динамика точки, динамика материальной системы и твердого тела, элементы аналитической механики и теории линейных и нелинейных колебаний. Более подробно, чем в традиционных курсах, излагаются вопросы движения материальной точки в центральном силовом поле, динамика тела переменной массы, теории гироскопов. Приводится много примеров прикладного значения.
Книга рассчитана на студентов дневных, вечерних и заочных отделений технических вузов с полной и сокращенной программой по механике, а также может быть полезной для аспирантов и инженерно-технических работников.
⚙️ Теоретическая механика (в обиходе — теормех, реже — термех) — наука об общих законах механического движения и взаимодействия материальных тел, инженерная физико-математическая дисциплина. Будучи, по существу, одним из разделов физики, теоретическая механика, вобрав в себя фундаментальную основу в виде аксиоматики, выделилась в самостоятельную науку и получила широкое развитие благодаря своим обширным и важным приложениям в естествознании и технике, одной из основ которой она является. На основных законах и принципах теоретической механики базируются многие общеинженерные дисциплины, такие, как сопротивление материалов, строительная механика, гидравлика, теория механизмов и машин, детали машин и другие. На основе теорем и принципов теоретической механики решаются многие инженерные задачи и осуществляется проектирование новых машин, конструкций и сооружений. #физика #механика #динамика #подборка_книг #кинематика #physics #статика #mechanics #теоретическая_механика #термех #динамика
💡 Physics.Math.Code // @physics_lib
📙 Том 1. В книге изложены статика и кинематика. Приведено большое количество примеров и задач, имеющих прикладное значение. Кроме традиционного материала, книга содержит некоторые разделы, выходящие за пределы программы, как, например, определение натяжения тяжелй подвешенной нити, определение реакций упругих опор твердого тела, криволинейные координаты.
📙 Том 2. В книге изложены динамика точки, динамика материальной системы и твердого тела, элементы аналитической механики и теории линейных и нелинейных колебаний. Более подробно, чем в традиционных курсах, излагаются вопросы движения материальной точки в центральном силовом поле, динамика тела переменной массы, теории гироскопов. Приводится много примеров прикладного значения.
Книга рассчитана на студентов дневных, вечерних и заочных отделений технических вузов с полной и сокращенной программой по механике, а также может быть полезной для аспирантов и инженерно-технических работников.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM