Forwarded from اتاق برنامه نویسی </> (PapiDon)
⚜️ مدلهای نوین در هوش مصنوعی: LLM، VLM و Diffusion و مدلهای چندوجهی Multimodal Models
در این توضیح، سه نوع مدل هوش مصنوعی پیشرفته یعنی مدلهای زبانی بزرگ (LLM)، مدلهای بینایی-زبانی (VLM) و مدلهای انتشار (Diffusion Models) را بررسی میکنیم. همچنین به مدلهای چندوجهی (Multimodal Models) میپردازیم.
🔸 ۱. مدلهای زبانی بزرگ (LLM - Large Language Models)
مدلهای زبانی بزرگ (LLM) مانند GPT-4، BERT و LLaMA، نوعی از مدلهای یادگیری عمیق هستند که توانایی پردازش و تولید زبان طبیعی را دارند.
✅ چگونه کار میکنند؟
- این مدلها بر اساس شبکههای عصبی ترانسفورمر (Transformer) ساخته شدهاند.
- با حجم عظیمی از متن آموزش داده میشوند و میتوانند متون جدید تولید کنند.
- کاربرد اصلی آنها در ترجمه، خلاصهسازی، چتباتها، پاسخگویی به سوالات و تولید محتوا است.
مثال:
🔹 وقتی از یک LLM مثل GPT بپرسید: "آیا میتوانی یک متن کوتاه درباره گربهها بنویسی؟"
🔹 مدل بر اساس دادههایی که قبلاً یاد گرفته، متنی درباره گربهها تولید میکند.
🔸 ۲. مدلهای بینایی-زبانی (VLM - Vision-Language Models)
مدلهای VLM ترکیبی از بینایی (تصویر) و زبان (متن) هستند و میتوانند ورودیهایی مانند تصویر و متن را همزمان پردازش کنند. مدلهایی مانند CLIP، BLIP و GPT-4V نمونههای معروفی از این دسته هستند.
✅ چگونه کار میکنند؟
- این مدلها با استفاده از ترکیب شبکههای عصبی بینایی (مانند CNN یا ViT) و مدلهای زبانی (LLM) ساخته میشوند.
- میتوانند یک تصویر را توصیف کنند، متن را در تصویر پیدا کنند، یا به سوالاتی درباره تصویر پاسخ دهند.
مثال:
🔹 اگر یک عکس از یک سگ را به مدل بدهید و بپرسید "این چه نژادی است؟"، مدل با تطبیق تصویر و متن پاسخ مناسب میدهد.
🔹 در ChatGPT با قابلیت بینایی (GPT-4V) میتوان عکسی ارسال کرد و از مدل درباره آن سوال پرسید.
🔸 ۳. مدلهای انتشار (Diffusion Models)
مدلهای انتشار، نوعی از مدلهای مولد هستند که در تولید تصاویر، ویدیو و حتی صدا استفاده میشوند. مدلهایی مانند Stable Diffusion، DALL·E و Midjourney نمونههای مشهور هستند.
✅ چگونه کار میکنند؟
- این مدلها ابتدا با اضافه کردن نویز به تصاویر و سپس یادگیری چگونگی بازگردانی آنها آموزش داده میشوند.
- این فرآیند باعث میشود که مدل بتواند تصاویر واقعی از متن تولید کند.
مثال:
🔹 اگر به مدل Stable Diffusion دستور دهید "یک گربه در حال خواندن کتاب در کنار شومینه" را تولید کن، مدلی که از انتشار استفاده میکند تصویری جدید بر اساس این توضیح ایجاد میکند.
🔸 ۴. مدلهای چندوجهی (Multimodal Models)
مدلهای چندوجهی قادر به پردازش چندین نوع ورودی مانند تصویر، ویدیو، صدا و متن به طور همزمان هستند. این مدلها ترکیبی از LLM، VLM و سایر فناوریها هستند.
✅ چگونه کار میکنند؟
- این مدلها دادههای چندوجهی (Multi-Modal) را با هم ترکیب میکنند.
- میتوانند سوالات متنی را با ترکیب تصویر و صدا پاسخ دهند.
مثال:
🔹مدلهای هوش مصنوعی در خودروهای خودران که همزمان اطلاعات دوربین (تصویر)، رادار (داده سنسور) و متن (فرمانها) را پردازش میکنند.
🔹 مدلهای هوش مصنوعی در پزشکی که میتوانندعکس رادیولوژی و توضیحات پزشک را همزمان تحلیل کنند.
✨ اگر فقط با متن کار داریم؟ LLM بهترین گزینه است.
✨ اگر تصویر و متن را میخواهیم؟ VLM را انتخاب میکنیم.
✨ اگر نیاز به تولید تصاویر جدید از متن داریم؟ Diffusion مناسب است.
✨ اگر چندین نوع ورودی (صوت، تصویر، متن) را ترکیب میکنیم؟ از Multimodal استفاده میکنیم.
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
در این توضیح، سه نوع مدل هوش مصنوعی پیشرفته یعنی مدلهای زبانی بزرگ (LLM)، مدلهای بینایی-زبانی (VLM) و مدلهای انتشار (Diffusion Models) را بررسی میکنیم. همچنین به مدلهای چندوجهی (Multimodal Models) میپردازیم.
🔸 ۱. مدلهای زبانی بزرگ (LLM - Large Language Models)
مدلهای زبانی بزرگ (LLM) مانند GPT-4، BERT و LLaMA، نوعی از مدلهای یادگیری عمیق هستند که توانایی پردازش و تولید زبان طبیعی را دارند.
✅ چگونه کار میکنند؟
- این مدلها بر اساس شبکههای عصبی ترانسفورمر (Transformer) ساخته شدهاند.
- با حجم عظیمی از متن آموزش داده میشوند و میتوانند متون جدید تولید کنند.
- کاربرد اصلی آنها در ترجمه، خلاصهسازی، چتباتها، پاسخگویی به سوالات و تولید محتوا است.
مثال:
🔹 وقتی از یک LLM مثل GPT بپرسید: "آیا میتوانی یک متن کوتاه درباره گربهها بنویسی؟"
🔹 مدل بر اساس دادههایی که قبلاً یاد گرفته، متنی درباره گربهها تولید میکند.
🔸 ۲. مدلهای بینایی-زبانی (VLM - Vision-Language Models)
مدلهای VLM ترکیبی از بینایی (تصویر) و زبان (متن) هستند و میتوانند ورودیهایی مانند تصویر و متن را همزمان پردازش کنند. مدلهایی مانند CLIP، BLIP و GPT-4V نمونههای معروفی از این دسته هستند.
✅ چگونه کار میکنند؟
- این مدلها با استفاده از ترکیب شبکههای عصبی بینایی (مانند CNN یا ViT) و مدلهای زبانی (LLM) ساخته میشوند.
- میتوانند یک تصویر را توصیف کنند، متن را در تصویر پیدا کنند، یا به سوالاتی درباره تصویر پاسخ دهند.
مثال:
🔹 اگر یک عکس از یک سگ را به مدل بدهید و بپرسید "این چه نژادی است؟"، مدل با تطبیق تصویر و متن پاسخ مناسب میدهد.
🔹 در ChatGPT با قابلیت بینایی (GPT-4V) میتوان عکسی ارسال کرد و از مدل درباره آن سوال پرسید.
🔸 ۳. مدلهای انتشار (Diffusion Models)
مدلهای انتشار، نوعی از مدلهای مولد هستند که در تولید تصاویر، ویدیو و حتی صدا استفاده میشوند. مدلهایی مانند Stable Diffusion، DALL·E و Midjourney نمونههای مشهور هستند.
✅ چگونه کار میکنند؟
- این مدلها ابتدا با اضافه کردن نویز به تصاویر و سپس یادگیری چگونگی بازگردانی آنها آموزش داده میشوند.
- این فرآیند باعث میشود که مدل بتواند تصاویر واقعی از متن تولید کند.
مثال:
🔹 اگر به مدل Stable Diffusion دستور دهید "یک گربه در حال خواندن کتاب در کنار شومینه" را تولید کن، مدلی که از انتشار استفاده میکند تصویری جدید بر اساس این توضیح ایجاد میکند.
🔸 ۴. مدلهای چندوجهی (Multimodal Models)
مدلهای چندوجهی قادر به پردازش چندین نوع ورودی مانند تصویر، ویدیو، صدا و متن به طور همزمان هستند. این مدلها ترکیبی از LLM، VLM و سایر فناوریها هستند.
✅ چگونه کار میکنند؟
- این مدلها دادههای چندوجهی (Multi-Modal) را با هم ترکیب میکنند.
- میتوانند سوالات متنی را با ترکیب تصویر و صدا پاسخ دهند.
مثال:
🔹مدلهای هوش مصنوعی در خودروهای خودران که همزمان اطلاعات دوربین (تصویر)، رادار (داده سنسور) و متن (فرمانها) را پردازش میکنند.
🔹 مدلهای هوش مصنوعی در پزشکی که میتوانندعکس رادیولوژی و توضیحات پزشک را همزمان تحلیل کنند.
✨ اگر فقط با متن کار داریم؟ LLM بهترین گزینه است.
✨ اگر تصویر و متن را میخواهیم؟ VLM را انتخاب میکنیم.
✨ اگر نیاز به تولید تصاویر جدید از متن داریم؟ Diffusion مناسب است.
✨ اگر چندین نوع ورودی (صوت، تصویر، متن) را ترکیب میکنیم؟ از Multimodal استفاده میکنیم.
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
🔥2❤1
Forwarded from اتاق برنامه نویسی </> (PapiDon)
🎓 درسگفتار 3: آشنایی با مدلهای ترکیبی بینایی و زبان (VLM)
دنیا پر از تصویر و پر از نوشتهست.
ما آدمها وقتی چیزی میبینیم، همزمان هم تصویرش رو درک میکنیم و هم اگه متنی کنارش باشه، اون رو هم میخونیم و باهم ترکیب میکنیم.
یه عکس از یه سگ کنار دریا میبینی و زیرش نوشته: "سگم عاشق تابستونه!"
تو فوراً متوجه میشی که عکس و نوشته به هم مربوطان. مدلهای VLM هم دقیقاً همین کارو میکنن.
✨ تعریف سادهی VLM:
یعنی Vision-Language Model مدلی که هم میفهمه، هم میبینه، هم میخونه.
این مدلها طوری طراحی شدن که بتونن همزمان:
- تصویرها رو ببینن
- متنها رو بخونن
- و ربط بین اونها رو بفهمن
⚙️ معماری کلی VLM چطوریه؟ (ساختار درونی)
یک مدل VLM معمولاً از ۳ بخش اصلی ساخته شده:
1️⃣ بینایی (Vision Encoder):
عکس رو میگیره و تبدیلش میکنه به خلاصهای عددی که کامپیوتر بفهمه.
2️⃣ زبان (Language Encoder):
متن رو میگیره و اونم تبدیل میکنه به خلاصهای از معنا.
3️⃣ بخش ترکیبکننده (Fusion Module):
جایی که اون دوتا خلاصه به هم میرسن و مدل تصمیم میگیره که چی به چی مربوطه.
✳️ نکته مهم:
همهی اینها داخل یه مدل واحد اتفاق میافته، ولی هر بخش، تخصص خودش رو داره.
🧐 آموزش VLM چطوره؟
مدلهای VLM با یه روش خیلی هوشمند آموزش میبینن:
بهشون عکس و متن مربوط نشون داده میشه.
هدف اینه که یاد بگیرن کدوم متن با کدوم عکس میخوره.
روش آموزش معروفی که استفاده میشه بهش میگن: Contrastive Learning (یادگیری با مقایسه)
در این روش:
- عکس و متن درست باید به هم نزدیک بشن (توی ذهن مدل)
- عکس و متن اشتباه باید از هم دور بشن
مثل اینه که یاد بگیری "عکس سگ" به "متن دربارهی سگ" ربط داره، نه به "پیتزا داغ روی میز".
🔹 آیا VLM بهتر از LLMهاست؟
نه، بهتر نیست — بلکه توانایی متفاوتی داره.
اگه فقط بخوای متن بنویسی یا ترجمه کنی، LLM کافیه.
ولی اگه بخوای از روی تصویر چیزی بفهمی یا متن مرتبط بسازی، VLM لازمه.
🛠 کاربردهای واقعی VLM:
- توصیف خودکار عکسها
- ساخت تصویر از روی متن (Text-to-Image)
- کمک به افراد نابینا با توصیف محیط
- طراحی لباس، آواتار، لوگو و... از روی توضیح
- تحلیل گزارشهای تصویری پزشکی
- ساختن دنیای مجازی و بازیهای تعاملی
🧠 درک نهایی: VLM چطور فکر میکنه؟
هم تصویر رو میبینه
هم متن رو میفهمه
بعد اون دو تا رو توی یه فضای مشترک عددی (embedding space) میذاره و بررسی میکنه که چقدر به هم نزدیکان
مثل یه مترجم تصویری-زبانی که همزمان میتونه نگاه کنه و بفهمه چی داره میشنوه یا میخونه.
📌 خلاصهی کلی:
- در واقع VLMها مدلهایی هستن که تصویر و متن رو با هم تحلیل میکنن.
- معماریشون ترکیبی از مدل بینایی و زبانیه.
- با دادههای "عکس + متن" آموزش میبینن.
- توی زمینههایی که ترکیب تصویر و متن مهمه، بسیار قدرتمندن.
- نمونههای معروفش: CLIP، Flamingo، BLIP و ...
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
دنیا پر از تصویر و پر از نوشتهست.
ما آدمها وقتی چیزی میبینیم، همزمان هم تصویرش رو درک میکنیم و هم اگه متنی کنارش باشه، اون رو هم میخونیم و باهم ترکیب میکنیم.
یه عکس از یه سگ کنار دریا میبینی و زیرش نوشته: "سگم عاشق تابستونه!"
تو فوراً متوجه میشی که عکس و نوشته به هم مربوطان. مدلهای VLM هم دقیقاً همین کارو میکنن.
✨ تعریف سادهی VLM:
یعنی Vision-Language Model مدلی که هم میفهمه، هم میبینه، هم میخونه.
این مدلها طوری طراحی شدن که بتونن همزمان:
- تصویرها رو ببینن
- متنها رو بخونن
- و ربط بین اونها رو بفهمن
⚙️ معماری کلی VLM چطوریه؟ (ساختار درونی)
یک مدل VLM معمولاً از ۳ بخش اصلی ساخته شده:
1️⃣ بینایی (Vision Encoder):
عکس رو میگیره و تبدیلش میکنه به خلاصهای عددی که کامپیوتر بفهمه.
2️⃣ زبان (Language Encoder):
متن رو میگیره و اونم تبدیل میکنه به خلاصهای از معنا.
3️⃣ بخش ترکیبکننده (Fusion Module):
جایی که اون دوتا خلاصه به هم میرسن و مدل تصمیم میگیره که چی به چی مربوطه.
✳️ نکته مهم:
همهی اینها داخل یه مدل واحد اتفاق میافته، ولی هر بخش، تخصص خودش رو داره.
🧐 آموزش VLM چطوره؟
مدلهای VLM با یه روش خیلی هوشمند آموزش میبینن:
بهشون عکس و متن مربوط نشون داده میشه.
هدف اینه که یاد بگیرن کدوم متن با کدوم عکس میخوره.
روش آموزش معروفی که استفاده میشه بهش میگن: Contrastive Learning (یادگیری با مقایسه)
در این روش:
- عکس و متن درست باید به هم نزدیک بشن (توی ذهن مدل)
- عکس و متن اشتباه باید از هم دور بشن
مثل اینه که یاد بگیری "عکس سگ" به "متن دربارهی سگ" ربط داره، نه به "پیتزا داغ روی میز".
🔹 آیا VLM بهتر از LLMهاست؟
نه، بهتر نیست — بلکه توانایی متفاوتی داره.
اگه فقط بخوای متن بنویسی یا ترجمه کنی، LLM کافیه.
ولی اگه بخوای از روی تصویر چیزی بفهمی یا متن مرتبط بسازی، VLM لازمه.
🛠 کاربردهای واقعی VLM:
- توصیف خودکار عکسها
- ساخت تصویر از روی متن (Text-to-Image)
- کمک به افراد نابینا با توصیف محیط
- طراحی لباس، آواتار، لوگو و... از روی توضیح
- تحلیل گزارشهای تصویری پزشکی
- ساختن دنیای مجازی و بازیهای تعاملی
🧠 درک نهایی: VLM چطور فکر میکنه؟
هم تصویر رو میبینه
هم متن رو میفهمه
بعد اون دو تا رو توی یه فضای مشترک عددی (embedding space) میذاره و بررسی میکنه که چقدر به هم نزدیکان
مثل یه مترجم تصویری-زبانی که همزمان میتونه نگاه کنه و بفهمه چی داره میشنوه یا میخونه.
📌 خلاصهی کلی:
- در واقع VLMها مدلهایی هستن که تصویر و متن رو با هم تحلیل میکنن.
- معماریشون ترکیبی از مدل بینایی و زبانیه.
- با دادههای "عکس + متن" آموزش میبینن.
- توی زمینههایی که ترکیب تصویر و متن مهمه، بسیار قدرتمندن.
- نمونههای معروفش: CLIP، Flamingo، BLIP و ...
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
❤1👍1🔥1
Forwarded from اتاق برنامه نویسی </> (PapiDon)
https://youtu.be/7xOHcoLusQ8?si=pm8v_CBotgP_YsCe
🧠 همیشه میگن: «مدل رو آموزش دادن»
اما واقعاً یعنی چی؟
چطوری یه مدل خام، بدون ذرهای دانش، تبدیل میشه به یه پاسخگو، تحلیلگر، و متخصص؟
توی این اپیزود، دقیقاً به همین سؤال جواب میدیم.
از Pre-training تا Fine-tuning و کلی نکته ظریف اما مهم!
🎥 ببین چه اتفاقی میافته وقتی دادهها، مغز یه مدل رو میسازن...
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
🧠 همیشه میگن: «مدل رو آموزش دادن»
اما واقعاً یعنی چی؟
چطوری یه مدل خام، بدون ذرهای دانش، تبدیل میشه به یه پاسخگو، تحلیلگر، و متخصص؟
توی این اپیزود، دقیقاً به همین سؤال جواب میدیم.
از Pre-training تا Fine-tuning و کلی نکته ظریف اما مهم!
🎥 ببین چه اتفاقی میافته وقتی دادهها، مغز یه مدل رو میسازن...
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
YouTube
چطور به مدل هوش مصنوعی یاد بدیم؟
چطور به مدل هوش مصنوعی یاد بدیم؟
راز آموزش مدلهای هوش مصنوعی | از خوراک دادهها تا مغز دیجیتال!
سلام!
من ابراهیم هستم از کانال PapiDon State 👋
و توی این قسمت قراره با هم یه سفر جذاب و عمیق داشته باشیم داخل مغز مدلهای هوش مصنوعی!
📌 شاید برات سوال باشه:…
راز آموزش مدلهای هوش مصنوعی | از خوراک دادهها تا مغز دیجیتال!
سلام!
من ابراهیم هستم از کانال PapiDon State 👋
و توی این قسمت قراره با هم یه سفر جذاب و عمیق داشته باشیم داخل مغز مدلهای هوش مصنوعی!
📌 شاید برات سوال باشه:…
❤1🔥1
Forwarded from اتاق برنامه نویسی </> (PapiDon)
🔥 قسمت جدید از فصل دوم منتشر شد ✨
آیا یه مدل هوش مصنوعی فقط داده رو میفهمه؟
یا میتونه آینده رو پیشبینی کنه؟
یا اصلاً دست به قلم میشه و یه چیز جدید میسازه؟
توی این قسمت، رفتیم سراغ یه سوال بنیادی:
🧐 «خروجی مدلها دقیقا چیه؟»
💥سه فاکتور اصلی، سه رفتار متفاوت، سه دنیا:
✅ Classification – فقط تشخیص میده
✅ Prediction – حدس میزنه
✅ Generation – میسازه
لینک ویدیو :
https://youtu.be/Oz2KvvxMzsU?si=hay5aV1Vg1-bIznm
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
آیا یه مدل هوش مصنوعی فقط داده رو میفهمه؟
یا میتونه آینده رو پیشبینی کنه؟
یا اصلاً دست به قلم میشه و یه چیز جدید میسازه؟
توی این قسمت، رفتیم سراغ یه سوال بنیادی:
🧐 «خروجی مدلها دقیقا چیه؟»
💥سه فاکتور اصلی، سه رفتار متفاوت، سه دنیا:
✅ Classification – فقط تشخیص میده
✅ Prediction – حدس میزنه
✅ Generation – میسازه
لینک ویدیو :
https://youtu.be/Oz2KvvxMzsU?si=hay5aV1Vg1-bIznm
📁 #AI
✅ کانال تخصصی لاراول
📌 @PapiDon_state
☕️ اتاق برنامهنویسی
📌 @PapiDon_coding
YouTube
سه اصل خروجی در معماری مدلهای هوش مصنوعی
سه اصل خروجی در معماری مدلهای هوش مصنوعی
سه فاکتور اساسی برای فهم خروجی مدلها
سلام!
من ابراهیم هستم به همراه NEO از کانال PapiDon State 👋
در این قسمت میخوایم بریم سراغ یه سوال ساده اما عمیق: مدلهای هوش مصنوعی بعد از آموزش، دقیقاً چه خروجیهایی تولید…
سه فاکتور اساسی برای فهم خروجی مدلها
سلام!
من ابراهیم هستم به همراه NEO از کانال PapiDon State 👋
در این قسمت میخوایم بریم سراغ یه سوال ساده اما عمیق: مدلهای هوش مصنوعی بعد از آموزش، دقیقاً چه خروجیهایی تولید…
❤1🔥1