onlinebme
4.82K subscribers
1.48K photos
574 videos
346 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
❇️ شروع ورکشاپهای تخصصی BCI
✔️ کلاسبندی داده های تصوری حرکتی با استفاده از سیگنالهای EEG
#EEG
#Motor_Imagery
#bciCompettition
#classification #SVM #FDA #KNN #TREE
#CSP #RCSP #FBCSP #CSSP #CAR #Low & #high Laplacian

#ظرفیت ورکشاپ: 10 نفر
مدت زمان: 12 ساعت ( کارگاه دو روزه - چهارشنبه و پنجشنبه )

محل برگزاری ورکشاپ: چهارراه ولیعصر - به سمت سه راه جمهوری- نبش کوچه پرتویی- جنب بانک پارسیان- ساختمان وفا- طبقه سوم- واحد 306

◀️ جهت ثبت نام به سایت زیر مراجعه کنید👇👇👇👇
http://onlinebme.com/bci_1_workshop/


کسب اطلاعات بیشتر👇
@OnlineBME_Admin
0936-038-2687

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
✔️ @OnlineBME
❇️ ثبت نام دوره ي دوم ورکشاپBCI1

✔️ کلاسبندی داده های تصوری حرکتی با استفاده از سیگنالهای EEG
#EEG
#Motor_Imagery
#bciCompettition
#classification #SVM #FDA #KNN #TREE
#CSP #RCSP #FBCSP #CSSP #CAR #Low & #high  Laplacian

#ظرفیت ورکشاپ: 10 نفر

#ظرفیت باقي مانده: 7 نفر

مدت زمان: 12 ساعت ( کارگاه دو روزه - چهارشنبه و پنجشنبه )

محل برگزاری ورکشاپ:  چهارراه ولیعصر  - به سمت سه راه جمهوری- نبش کوچه پرتویی- جنب بانک پارسیان- ساختمان وفا- طبقه سوم- واحد 306

◀️ اين ورکشاپ در تاريخ 15 و 16 اسفندماه برگزار خواهد شد. جهت ثبت نام اسم و شماره تماس خودتون رو به آیدی زیر ارسال کنید.
@OnlineBME_Admin
0936-038-268

@onlinebme
onlinebme
💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢 مدرس : محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران مدت زمان ویدیوها: 19 ساعت اولین دوره تخصصی در ایران که در آن تمام اصول مورد نیاز برای پردازش سیگنال…
💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢

مدرس : محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
مدت زمان ویدیوها: 19 ساعت

واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی می‌کند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنال‌های حیاتی اندازه‌گیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبه‌های انتزاعی حالت شناختی فرد را پیش بینی می‌کند.  در دوره تخصصی پردازش سیگنال EEG  بطور کامل در مورد سیستم BCI  توضیح داده شده است.
🔵 واسط مغز و کامپیوتر مبتنی بر تصور حرکتی(motor imagery)، حالتی که شخص تصور می‌کند را از روی سیگنال‌های مغزی( EEG) فرد، تشخیص داده و به دستور تبدیل می‌کند. هدف فناوری BCI این است که یک #راه_ارتباطی جدید برای افراد معلول (فلج) ایجاد کند به طوری که افراد هیچ وابستگی‌ای به کنترل عضلات نداشته باشند. سیگنال EEG یکی از ورودی‌هایی هست که BCI از طریق این سیگنال ارتباط بین شخص و محیط بیرونی را فراهم می‌کند. در BCI مبتنی بر تصور حرکتی از شخص خواسته‌ می‌شود تا حرکتی را بدون اینکه انجام دهد تصور کند، که در نتیجه آن رخدادهایی مرتبط با تصور در مغز رخ می‌دهد. هدف #BCI این است که از روی سیگنال‌های EEG نوع حرکت تصور شده توسط شخص را تشخیص دهد. تشخیص نوع تصوری که فرد انجام داده از روی  سیگنال #EEG که روزلوشن مکانی مناسبی ندارد کار بسیار سختی است و به الگوریتمهای پیشرفته ای نیاز است.

🔹ما در این دوره تخصصی تمام مباحثی که برای پردازش داده‌های #EEG مبتنی بر تسک تصوری حرکتی هست را آموزش می‌دهیم و برای اینکه با عملکرد عملی این الگوریتم ها آشنا شوید، چندین #پروژه_عملی طبق چند #مقاله_تخصصی روی داده های واقعی سایت #BCI_competition انجام میدهیم.

🗂از سه مجموع داده EEG مبتنی بر تسک تصور حرکتی در این دوره استفاده شده است. در ابتدا #پروسه_ثبت و اطلاعات مربوط به این داده‌ها را کامل توضیح می‌دهیم، باندهای #فرکانسی که مرتبط با تصور حرکتی و #مناطق مغزی مرتبط با تصور حرکتی را توضیح می‌هیم. سپس شروع به تحلیل داده‌ها می‌کنیم. در ادامه انواع فیلترهای #مکانی و #فرکانسی جهت #کاهش_نویز سیگنال و #source_localization را توضیح داده  و به صورت #گام_به_گام در متلب پیاده سازی کرده و روی داده اعمال می‌کنیم، در ادامه روش‌های استخراج ویژگی و کلاسبندی داده تصوری حرکتی را توضیح داده و روی داده پیاده‌‌سازی می‌کنیم.
در این دوره تئوری الگوریتم معروف #CSP ، الگوهای مکانی مشترک (Common Special Patterns)
را به زبان ساده توضیح د
اده و سپس #گام_به_گام در متلب پیاده‌سازی کرده و بر روی داده اعمال می‌کنیم.

در نهایت معایب و مزایای CSP را بررسی می‌کنیم و برای حل مشکل این الگورتیم معروف، الگورتیم‌ بهبود یافته شده CSP یعنی
#FBCSP -filter bank CSP
 را پیاده‌سازی می‌کنیم.

در این دوره برای کلاسبندی داده‌ها از سه کلاسبند معروف بنام
 SVM-support vector machine  knn-k nearest neighbors 
lda-linear discriminant analysis
استفاده کرده‌ایم.

🔹برای ارزیابی و اعتبارسنجی مدلهای طراحی شده از چهار روش معروف
 k-fold cross validation
the hold out method
random subsampling 
leave one out 
استفاده کرده ایم.

در پایان این دوره، شرکت‌کننده دیگر هیچ مشکلی در انجام #پروژه‌های_عملی  و پردازش سیگنال‌های EEG مبتنی بر تصوری حرکتی و #پیاده‌سازی_مقالات تخصصی جهت بهبود عملکرد کلاسبندی نخواهد داشت.

🔴4 تا مقاله تخصصی در این دوره پیاده سازی شده است که میتوانید برای #پروژه_های_درسی یا #پایان_نامه خود استفاده کنید.
🔵پروژه های عملی بر روی سه داده معروف bci competition انجام شده اند👌
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی

جلسه ششم: تئوری و پیاده سازی FBCSP

خلاصه: یکی از ایرادات فیلتر مکانیCSP اینه که برای فیلترینگ داده در ابتدا یک باند فرکانسی خاص مشخص میشود و این در حالی هست که در هر فرد این رنج میتونه متغیر باشه. فیلتر مکانی FBCSP یک روش معروفی هست که این ایراد CSP رو برطرف میکنه. در این جلسه الگوریتم FBCSP را طبق یک مقاله تخصصی در متلب #مرحله_به_مرحله پیاده سازی کرده و روی داده های واقعی BCI Competition اعمال میکنیم. در ادامه این الگوریتم یک روش #انتخاب_ویژگی هم پیاده سازی کرده ایم تا از بین ویژگی های بدست آمده، بهترین ویژگی ها انتخاب شوند.

🧑‍💻مدرس: محمد نوری زاده چرلو

🌀جهت تهیه پکیج آموزشی به سایت زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

#پردازش_سیگنال
#پیاده‌سازی_مقاله
#پروژه_عملی
#واسط_مغز_کامپیوتر
#یادگیری_ماشین
#فیلترهای_مکانی_مشترک
#csp #bci #EEG #FBCSP
#Machine_learning

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme