onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN) #پیادهسازی_مقاله #پروژه_عملی #طبقهبندی #کلاسبندی 🏢 آکادمی آنلاین…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
✍ در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را طبق دو #مقاله تخصصی آموزش میدهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. این شبکه از لحاظ تصمیمگیری شباهت زیادی با کلاسبند #بیزین دارد و همین باعث شده عملکرد طبقهبندی بالایی داشته باشد و در عمل خیلی از این شبکه عصبی استفاده کنند. همانطور که میدانید طبقهبند بیزین اگر تمام شرایطی که نیاز دارد فراهم شود #بهینهترین طبقهبند بین تمام طبقهبندها خواهد بود. ولی از آنجا که در عمل نمیتوان تمام شرایط را فراهم کرد در نتیجه عملکرد بهینهای ندارد. شبکه عصبی PNN از چهار لایه input layer, pattern layer, summation layer و output layer تشکیل شده است و از یک ایده بسیار جالبی برای کلاسبندی استفاده می کند. #تئوری یادگیری این شبکه عصبی را طبق دو مقاله تخصصی ضمیمه شده در پیوست، به زبان ساده توضیح داده و سپس در متلب #مرحله_به_مرحله پیاده سازی می کنیم. و برای اینکه با کارایی خوب این شبکه آشنا شوید دو پروژه تخصصی تشخیص سرطان سینه و کلاسبندی داده سه کلاسهiris (گل زنبق) با استفاده از شبکه عصبی PNN انجام دادهایم. و در آخر #مزایا_و_معایب هر روش را با مثال عملی توضیح داده ایم.
🔺نکته: مباحث این جلسه طبق مطالب مقالات پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه دهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/pnn-neural-network/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
✍ در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را طبق دو #مقاله تخصصی آموزش میدهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. این شبکه از لحاظ تصمیمگیری شباهت زیادی با کلاسبند #بیزین دارد و همین باعث شده عملکرد طبقهبندی بالایی داشته باشد و در عمل خیلی از این شبکه عصبی استفاده کنند. همانطور که میدانید طبقهبند بیزین اگر تمام شرایطی که نیاز دارد فراهم شود #بهینهترین طبقهبند بین تمام طبقهبندها خواهد بود. ولی از آنجا که در عمل نمیتوان تمام شرایط را فراهم کرد در نتیجه عملکرد بهینهای ندارد. شبکه عصبی PNN از چهار لایه input layer, pattern layer, summation layer و output layer تشکیل شده است و از یک ایده بسیار جالبی برای کلاسبندی استفاده می کند. #تئوری یادگیری این شبکه عصبی را طبق دو مقاله تخصصی ضمیمه شده در پیوست، به زبان ساده توضیح داده و سپس در متلب #مرحله_به_مرحله پیاده سازی می کنیم. و برای اینکه با کارایی خوب این شبکه آشنا شوید دو پروژه تخصصی تشخیص سرطان سینه و کلاسبندی داده سه کلاسهiris (گل زنبق) با استفاده از شبکه عصبی PNN انجام دادهایم. و در آخر #مزایا_و_معایب هر روش را با مثال عملی توضیح داده ایم.
🔺نکته: مباحث این جلسه طبق مطالب مقالات پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه دهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/pnn-neural-network/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شبکه عصبی PNN (جلسه 10) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
در این جلسه شبکه عصبی معروفPNN را طبق دو مقاله تخصصی آموزش داده و سپس مرحله به مرحله پیادهسازی میکنیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. این شبکه از لحاظ تصمیمگیری شباهت زیادی با طبقهبند بیزین دارد و همین باعث شده عملکرد طبقهبندی بالایی داشته…