onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم) ✍ در جلسه ششم شروط مورد…
جزوه_خام_جلسه_پنجمبخش_سوم_قانون.pdf
1.5 MB
📋 #جزوه_خام جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF) ✍ ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه…
جزوه خام جلسه هشتم-شبکه عصبی rbf.pdf
3.7 MB
📋 #جزوه_خام جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM ) ما تا جلسه هشتم از مباحث #کتاب معروف Simon haykin استفاده کردیم و در دو…
جزوه خام جلسه9-شبکه عصبی ELM.pdf
2.1 MB
📋 #جزوه_خام جلسه نهم:
پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN) ✍ در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را…
جزوه خام جلسه10-شبکه عصبی PNN.pdf
1.6 MB
📋 #جزوه_خام جلسه دهم:
پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
Photo
season1-2.zip
13.6 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 1-3
۱-مقدمه ای بر شناسایی الگو و یادگیری ماشین
۲- تخمین ماکزیمم شباهت
۳- طبقه بند بیزین
۴- طبقه بند حداقل فاصله اقلیدسی
۵- طبقه بند حداقل فاصله ماهالانوبیس
6- پروژه های عملی
7- روشها و پارامترهای ارزیابی مدل یادگیری ماشین
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 1-3
۱-مقدمه ای بر شناسایی الگو و یادگیری ماشین
۲- تخمین ماکزیمم شباهت
۳- طبقه بند بیزین
۴- طبقه بند حداقل فاصله اقلیدسی
۵- طبقه بند حداقل فاصله ماهالانوبیس
6- پروژه های عملی
7- روشها و پارامترهای ارزیابی مدل یادگیری ماشین
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season1-2.zip
season3-4.zip
8.2 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش اول
1- knn
2- wknn1( article1)
3- wknn2( article2)
4- knn in regression
5- classifcation projects
6- regression projects
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش اول
1- knn
2- wknn1( article1)
3- wknn2( article2)
4- knn in regression
5- classifcation projects
6- regression projects
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season3-4.zip
season4-svm-MLP.zip
28.2 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش دوم و سوم
🔹شبکه عصبی
1- نورون و اجزای آن
2- پرسپترون تک لایه
3- قانون یادگیری LMS
4- شبکه عصبی در مسائل رگرسیون
5- شبکه عصبی پرسپترون چندلایه
6- پروژه های عملی طبقه بندی به شبکه عصبی
7- پروژه های عملی رگرسیون به شبکه عصبی
🔹 ماشین بردار پشتیبان svm
1- مسائل بهینه سازی
2- فاصله یک نقطه از خط
3- hard margin svm
4- soft margin svm
5- non linear SVM
6- multi class svm - OVO
7- multi class svm - OVR
8- Support vector regression
9- classification projects with svm
10- regression projects with svm
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش دوم و سوم
🔹شبکه عصبی
1- نورون و اجزای آن
2- پرسپترون تک لایه
3- قانون یادگیری LMS
4- شبکه عصبی در مسائل رگرسیون
5- شبکه عصبی پرسپترون چندلایه
6- پروژه های عملی طبقه بندی به شبکه عصبی
7- پروژه های عملی رگرسیون به شبکه عصبی
🔹 ماشین بردار پشتیبان svm
1- مسائل بهینه سازی
2- فاصله یک نقطه از خط
3- hard margin svm
4- soft margin svm
5- non linear SVM
6- multi class svm - OVO
7- multi class svm - OVR
8- Support vector regression
9- classification projects with svm
10- regression projects with svm
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season4-svm-MLP.zip
season5-ensemble-learning.zip
13.7 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 5- یادگیری جمعی
🟣پیاده سازی تکنیکهای یادگیری جمعی در مسائل کلاسبندی و رگرسیون:
🔹 Voting
🔹 Stacking
🔹 Bagging
🔺 tree
🔻 knn
🔺svm
🔹 Boosting
🔻SVM-AdaBoost
🔺LDA-AdaBoost
🔻Perceptron-AdaBoost
🔺KNN-AdaBoost
🔻TREE-AdaBoost
🔺ELM-AdaBoost
🔻WELM-AdaBoost
▪️AdaBoost.RT
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/ensemble-learning/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 5- یادگیری جمعی
🟣پیاده سازی تکنیکهای یادگیری جمعی در مسائل کلاسبندی و رگرسیون:
🔹 Voting
🔹 Stacking
🔹 Bagging
🔺 tree
🔻 knn
🔺svm
🔹 Boosting
🔻SVM-AdaBoost
🔺LDA-AdaBoost
🔻Perceptron-AdaBoost
🔺KNN-AdaBoost
🔻TREE-AdaBoost
🔺ELM-AdaBoost
🔻WELM-AdaBoost
▪️AdaBoost.RT
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/ensemble-learning/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season5-ensemble-learning.zip
season6-dimension reduction.zip
10.6 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
فصل ششم: تئوری و پیاده سازی الگوریتمهای کاهش بعد PCA و LDA
🔹 feature conditioning
🔹 feature mapping
🔹 PCA
🔻dimension reduction
🔺classification
🔹 LDA
🔻dimension reduction
🔺classification
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/dimension-reduction-using-lda-pca
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
فصل ششم: تئوری و پیاده سازی الگوریتمهای کاهش بعد PCA و LDA
🔹 feature conditioning
🔹 feature mapping
🔹 PCA
🔻dimension reduction
🔺classification
🔹 LDA
🔻dimension reduction
🔺classification
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/dimension-reduction-using-lda-pca
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season6-dimension reduction.zip
season7-feature selection.zip
8.3 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 7: انتخاب ویژگی(featureselection)
🔲 مقدمه ای بر انتخاب ویژگی
🔳 انتخاب ویژگی با روشهای اسکالر ( Filter methods)
🟣 انتخاب ویژگی با تست آماری ttest
🔵 انتخاب ویژگی با روش تجزیه و تحلیل واریانسها( anova)
🟢 انتخاب ویژگی با نرخ تفکیک پذیری فیشر(FDR)
🔴 انتخاب ویژگی با اطلاعات متقابل (mutual information)
🔲 انتخاب ویژگی با روشهای برداری(ترکیبی)- wrapper methods
🔹 feature conditioning
🔹filter methods feature Selection
🔹 ttsest
🔹 anova
🔻tvalue
🔻fvalue
🔺pvalue
🔹 fisher discriminant ratio
🔹 mutual information
🔹wrapper methods
🔹 sequential forward feature Selection
🔹 filter methods with wrapper methods
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season07-featrue-selection
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 7: انتخاب ویژگی(featureselection)
🔲 مقدمه ای بر انتخاب ویژگی
🔳 انتخاب ویژگی با روشهای اسکالر ( Filter methods)
🟣 انتخاب ویژگی با تست آماری ttest
🔵 انتخاب ویژگی با روش تجزیه و تحلیل واریانسها( anova)
🟢 انتخاب ویژگی با نرخ تفکیک پذیری فیشر(FDR)
🔴 انتخاب ویژگی با اطلاعات متقابل (mutual information)
🔲 انتخاب ویژگی با روشهای برداری(ترکیبی)- wrapper methods
🔹 feature conditioning
🔹filter methods feature Selection
🔹 ttsest
🔹 anova
🔻tvalue
🔻fvalue
🔺pvalue
🔹 fisher discriminant ratio
🔹 mutual information
🔹wrapper methods
🔹 sequential forward feature Selection
🔹 filter methods with wrapper methods
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season07-featrue-selection
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme