onlinebme
فصل 4(بخش دوم): تئوری و پیادهسازی ماشین بردار پشتیبان(SVM) و شبکه عصبی پرسپترون چندلایه (MLP) 🔹شبکه عصبی پرسپترون تک لایه ▪️ قانون یادگیری پرسپترون ▪️ قانون یادگیری LMS 🔻وینرهاف 🔺گرادیان نزولی 🔹 شبکه عصبی پرسپترون چندلایه 🔺 قانون یادگیری پس انتشار…
🎁پکیج جامع فصل های اول تا چهارم پترن و یادگیری ماشین ( از بیزین تا SVM)
✅ این پکیج شامل تمام مباحث آموزش داده شده در 4 فصل دوره شناسایی الگو و یادگیری ماشین است.
فصل اول: مقدمه ای بر شناسایی الگو و یادگیری ماشین
فصل دوم: کلاسبندهای پارامتری
🔹بیزین
🔸ماکزیمم شباهت
🔹حداقل فاصبله اقلیدسی
🔸حداقل فاصله ماهالانوبیس
فصل سوم: روشهای ارزیابی و پارمترهای ارزیابی
⚫️پارامترهای ارزیابی مسائل کلاسبندی (ماتریس کانفیوژن، صحت، حساسیت، اختصاصیت کلاسبندی)
🟢 روش ارزیابی the hold out method
🔴 روش ارزیابی k-fold cross validation
🟣 روش ارزیابی leave one out
🟢 روش ارزیابی random sub-sampling
⚫️نحوه انتخاب مدل بهینه با روش cross validation
فصل چهارم: الگوریتمهای غیرپارامتری در بحثهای رگرسیون و کلاسبندی
🔶الگوریتم نزدیکترین همسایه(knn)
🔷الگوریتم نزدیکترین همسایه وزندار (wknn)
🔶شبکه عصبی پرسپترون تک لایه
🔷شبکه عصبی پرسپترون چندلایه (MLP)
🔶ماشین بردار پشتیبان خطی(SVM)
🔷ماشین بردار پشتیبان غیرخطی(nonlinear SVM)
🟢ماشین بردار پشتیبان در مسائل رگرسیون (SVR)
➖➖➖➖➖➖➖➖➖➖➖
🌀 جهت تهیه پکیج آموزشی چهار فصل دوره پترن و یادگیری ماشین به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#پترن #یادگیری_ماشین
#پروژه_عملی #پیادهسازی_مقاله #پروژههای_درسی #پایان_نامه
#پروژه_محور
➖➖➖➖➖➖➖➖
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
✅ این پکیج شامل تمام مباحث آموزش داده شده در 4 فصل دوره شناسایی الگو و یادگیری ماشین است.
فصل اول: مقدمه ای بر شناسایی الگو و یادگیری ماشین
فصل دوم: کلاسبندهای پارامتری
🔹بیزین
🔸ماکزیمم شباهت
🔹حداقل فاصبله اقلیدسی
🔸حداقل فاصله ماهالانوبیس
فصل سوم: روشهای ارزیابی و پارمترهای ارزیابی
⚫️پارامترهای ارزیابی مسائل کلاسبندی (ماتریس کانفیوژن، صحت، حساسیت، اختصاصیت کلاسبندی)
🟢 روش ارزیابی the hold out method
🔴 روش ارزیابی k-fold cross validation
🟣 روش ارزیابی leave one out
🟢 روش ارزیابی random sub-sampling
⚫️نحوه انتخاب مدل بهینه با روش cross validation
فصل چهارم: الگوریتمهای غیرپارامتری در بحثهای رگرسیون و کلاسبندی
🔶الگوریتم نزدیکترین همسایه(knn)
🔷الگوریتم نزدیکترین همسایه وزندار (wknn)
🔶شبکه عصبی پرسپترون تک لایه
🔷شبکه عصبی پرسپترون چندلایه (MLP)
🔶ماشین بردار پشتیبان خطی(SVM)
🔷ماشین بردار پشتیبان غیرخطی(nonlinear SVM)
🟢ماشین بردار پشتیبان در مسائل رگرسیون (SVR)
➖➖➖➖➖➖➖➖➖➖➖
🌀 جهت تهیه پکیج آموزشی چهار فصل دوره پترن و یادگیری ماشین به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#پترن #یادگیری_ماشین
#پروژه_عملی #پیادهسازی_مقاله #پروژههای_درسی #پایان_نامه
#پروژه_محور
➖➖➖➖➖➖➖➖
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پکیج جامع شناسایی الگو و یادگیری ماشین( فصل های اول تا چهارم- از بیزین تا SVM) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شناسایی الگو یک فرایند شناختی است که در مغز ما زمانی که با برخی اطلاعاتی روبرو میشویم که با اطلاعات ذخیره شده در حافظه ما مطابقت دارد اتفاق می افتد. در علوم کامپیوتر، شناسایی الگو یک فرایند علمی است که در آن تمرکز بر شناخت خودکار الگوی داده های ورودی است.…
Forwarded from onlinebme
This media is not supported in your browser
VIEW IN TELEGRAM
📺 در این ویدیو فرق بین هوش مصنوعی، یادگیری ماشین و یادگیری عمیق رو توضیح میدهیم
👨💻مدرس: محمد نوری زاده چرلو
#هوش_مصنوعی
#یادگیری_ماشین
#یادگیری_عمیق
اطلاعات بیشتر:
https://onlinebme.com/unit/difference-between-ai-machine-learning-and-deep-learning/?id=4621
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
👨💻مدرس: محمد نوری زاده چرلو
#هوش_مصنوعی
#یادگیری_ماشین
#یادگیری_عمیق
اطلاعات بیشتر:
https://onlinebme.com/unit/difference-between-ai-machine-learning-and-deep-learning/?id=4621
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
Photo
season1-2.zip
13.6 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 1-3
۱-مقدمه ای بر شناسایی الگو و یادگیری ماشین
۲- تخمین ماکزیمم شباهت
۳- طبقه بند بیزین
۴- طبقه بند حداقل فاصله اقلیدسی
۵- طبقه بند حداقل فاصله ماهالانوبیس
6- پروژه های عملی
7- روشها و پارامترهای ارزیابی مدل یادگیری ماشین
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 1-3
۱-مقدمه ای بر شناسایی الگو و یادگیری ماشین
۲- تخمین ماکزیمم شباهت
۳- طبقه بند بیزین
۴- طبقه بند حداقل فاصله اقلیدسی
۵- طبقه بند حداقل فاصله ماهالانوبیس
6- پروژه های عملی
7- روشها و پارامترهای ارزیابی مدل یادگیری ماشین
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season1-2.zip
season3-4.zip
8.2 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش اول
1- knn
2- wknn1( article1)
3- wknn2( article2)
4- knn in regression
5- classifcation projects
6- regression projects
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش اول
1- knn
2- wknn1( article1)
3- wknn2( article2)
4- knn in regression
5- classifcation projects
6- regression projects
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season3-4.zip
season4-svm-MLP.zip
28.2 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش دوم و سوم
🔹شبکه عصبی
1- نورون و اجزای آن
2- پرسپترون تک لایه
3- قانون یادگیری LMS
4- شبکه عصبی در مسائل رگرسیون
5- شبکه عصبی پرسپترون چندلایه
6- پروژه های عملی طبقه بندی به شبکه عصبی
7- پروژه های عملی رگرسیون به شبکه عصبی
🔹 ماشین بردار پشتیبان svm
1- مسائل بهینه سازی
2- فاصله یک نقطه از خط
3- hard margin svm
4- soft margin svm
5- non linear SVM
6- multi class svm - OVO
7- multi class svm - OVR
8- Support vector regression
9- classification projects with svm
10- regression projects with svm
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 4- بخش دوم و سوم
🔹شبکه عصبی
1- نورون و اجزای آن
2- پرسپترون تک لایه
3- قانون یادگیری LMS
4- شبکه عصبی در مسائل رگرسیون
5- شبکه عصبی پرسپترون چندلایه
6- پروژه های عملی طبقه بندی به شبکه عصبی
7- پروژه های عملی رگرسیون به شبکه عصبی
🔹 ماشین بردار پشتیبان svm
1- مسائل بهینه سازی
2- فاصله یک نقطه از خط
3- hard margin svm
4- soft margin svm
5- non linear SVM
6- multi class svm - OVO
7- multi class svm - OVR
8- Support vector regression
9- classification projects with svm
10- regression projects with svm
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season-1-4-packages-pattern-recognition/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season4-svm-MLP.zip
season5-ensemble-learning.zip
13.7 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 5- یادگیری جمعی
🟣پیاده سازی تکنیکهای یادگیری جمعی در مسائل کلاسبندی و رگرسیون:
🔹 Voting
🔹 Stacking
🔹 Bagging
🔺 tree
🔻 knn
🔺svm
🔹 Boosting
🔻SVM-AdaBoost
🔺LDA-AdaBoost
🔻Perceptron-AdaBoost
🔺KNN-AdaBoost
🔻TREE-AdaBoost
🔺ELM-AdaBoost
🔻WELM-AdaBoost
▪️AdaBoost.RT
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/ensemble-learning/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 5- یادگیری جمعی
🟣پیاده سازی تکنیکهای یادگیری جمعی در مسائل کلاسبندی و رگرسیون:
🔹 Voting
🔹 Stacking
🔹 Bagging
🔺 tree
🔻 knn
🔺svm
🔹 Boosting
🔻SVM-AdaBoost
🔺LDA-AdaBoost
🔻Perceptron-AdaBoost
🔺KNN-AdaBoost
🔻TREE-AdaBoost
🔺ELM-AdaBoost
🔻WELM-AdaBoost
▪️AdaBoost.RT
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/ensemble-learning/
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season5-ensemble-learning.zip
season6-dimension reduction.zip
10.6 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
فصل ششم: تئوری و پیاده سازی الگوریتمهای کاهش بعد PCA و LDA
🔹 feature conditioning
🔹 feature mapping
🔹 PCA
🔻dimension reduction
🔺classification
🔹 LDA
🔻dimension reduction
🔺classification
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/dimension-reduction-using-lda-pca
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
فصل ششم: تئوری و پیاده سازی الگوریتمهای کاهش بعد PCA و LDA
🔹 feature conditioning
🔹 feature mapping
🔹 PCA
🔻dimension reduction
🔺classification
🔹 LDA
🔻dimension reduction
🔺classification
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/dimension-reduction-using-lda-pca
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
season6-dimension reduction.zip
season7-feature selection.zip
8.3 MB
📝#جزوه_خام دوره "پترن و یادگیری ماشین"
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 7: انتخاب ویژگی(featureselection)
🔲 مقدمه ای بر انتخاب ویژگی
🔳 انتخاب ویژگی با روشهای اسکالر ( Filter methods)
🟣 انتخاب ویژگی با تست آماری ttest
🔵 انتخاب ویژگی با روش تجزیه و تحلیل واریانسها( anova)
🟢 انتخاب ویژگی با نرخ تفکیک پذیری فیشر(FDR)
🔴 انتخاب ویژگی با اطلاعات متقابل (mutual information)
🔲 انتخاب ویژگی با روشهای برداری(ترکیبی)- wrapper methods
🔹 feature conditioning
🔹filter methods feature Selection
🔹 ttsest
🔹 anova
🔻tvalue
🔻fvalue
🔺pvalue
🔹 fisher discriminant ratio
🔹 mutual information
🔹wrapper methods
🔹 sequential forward feature Selection
🔹 filter methods with wrapper methods
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season07-featrue-selection
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔵اولین دوره جامع و تخصصی در ایران
✅ 140 ساعت ویدیوی آموزشی به همراه کدهای متلب پروژه ها و مقالات پیاده سازی شده👌
🔲 فصل 7: انتخاب ویژگی(featureselection)
🔲 مقدمه ای بر انتخاب ویژگی
🔳 انتخاب ویژگی با روشهای اسکالر ( Filter methods)
🟣 انتخاب ویژگی با تست آماری ttest
🔵 انتخاب ویژگی با روش تجزیه و تحلیل واریانسها( anova)
🟢 انتخاب ویژگی با نرخ تفکیک پذیری فیشر(FDR)
🔴 انتخاب ویژگی با اطلاعات متقابل (mutual information)
🔲 انتخاب ویژگی با روشهای برداری(ترکیبی)- wrapper methods
🔹 feature conditioning
🔹filter methods feature Selection
🔹 ttsest
🔹 anova
🔻tvalue
🔻fvalue
🔺pvalue
🔹 fisher discriminant ratio
🔹 mutual information
🔹wrapper methods
🔹 sequential forward feature Selection
🔹 filter methods with wrapper methods
⭕️ جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇
🌀https://onlinebme.com/product/season07-featrue-selection
#دوره #پترن و #یادگیری_ماشین
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
واکنش ما زمانی که کدمون دیروز درست کار میکرد ولی امروز درست کار نمیکنه!؟😅 @onlinebme
This media is not supported in your browser
VIEW IN TELEGRAM
اینم از واکنش ما وقتی مدلمون رو داده تست هم خوب عمل میکنه😅
#یادگیری_ماشین
#شبکه_عصبی
#شناسایی_الگو
@onlinebme
#یادگیری_ماشین
#شبکه_عصبی
#شناسایی_الگو
@onlinebme
onlinebme
✅ دوره شناسایی الگو و یادگیری ماشین (اولین دوره جامع و تخصصی در ایران) ⚠️ 140 ساعت ویدیوی آموزشی 🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر 🔹پیادهسازی مرحله مرحله الگوریتمها 🔹انجام پروژه های عملی و تخصصی 🔹پیاده سازی گام به گام مقالات تخصصی 🟣▪️پترن…
This media is not supported in your browser
VIEW IN TELEGRAM
🙊 یادگیری ماشین چیست؟
در این ویدیو مفهوم یادگیری ماشین به زبان ساده توضیح داده میشود.
🧑💻مترجم: امیررضا جهانی
#یادگیری_ماشین
#شناسایی_الگو
⭕️ ویدیوهای مرتبط👇
https://onlinebme.com/course/machine-learning-in-matlab/
@onlinebme
در این ویدیو مفهوم یادگیری ماشین به زبان ساده توضیح داده میشود.
🧑💻مترجم: امیررضا جهانی
#یادگیری_ماشین
#شناسایی_الگو
⭕️ ویدیوهای مرتبط👇
https://onlinebme.com/course/machine-learning-in-matlab/
@onlinebme
✅ دوره شناسایی الگو و یادگیری ماشین
⚠️ اولین دوره جامع و تخصصی در ایران
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⭕️⭕️ فصل اول: مقدمه ای بر یادگیری ماشین و شناسایی الگو
⭕️⭕️ فصل دوم: طبقه بندهای پارامتری
🔺بیزین
🔺توزیع نرمال
🔺ماکزیمم شباهت
🔺حداقل فاصله اقلیدسی
🔺حداقل فاصله ماهالانوبیس
⭕️⭕️ فصل سوم: روشها و پارامترهای ارزیابی
🔺confusion matrix
🔺the hold out method
🔺K-fold cross validation
🔺leave one out validation
🔺 random subsampling validation
⭕️⭕️ الگوریتمهای غیر پارامتری
🔹 knn
🔹wknn
🔹knn / wknn in regression
🔺slp
🔺adaline
🔺MLP
🔹 Hard-margin SVM
🔹 Soft-margin SVM
🔹non-linear SVM
🔹 linear- SVR
🔹 non-linear SVR
⭕️⭕️ فصل پنجم: یادگیری جمعی
🔹 Voting
🔹 Stacking
🔹 Bagging
🔹 Boosting
🔻 KNN ada-boost
🔺 SLP ada-boost
🔻 ELM ada-boost
🔺 LDA ada-boost
🔻 TREE ada-boost
🔺 SVM ada-boost
⭕️⭕️ فصل ششم: کاهش بعد
🔹 PCA
🔹 LDA
🔻 PCA as a classifier
🔺 LDA as a classifier
⭕️⭕️ فصل هفتم: انتخاب ویژگی
🔹 T-test
🔹 Anova
🔹 FDR
🔹 Mutual information
🔹 SFFS
⭕️⭕️ فصل هشتم: خوشه بندی
🔹 Fcm
🔹 K-means
🔹 G-means
✅در طول دوره علاوه بر آموزش تئوری و پیادهسازی روشها ، پروژه های تخصصی زیادی انجام شده است که دوستان میتوانند در پروژه های درسی یا پایان نامه خودشون استفاده کنند👌😊
#یادگیری_ماشین
#شناسایی_الگو
#machinelearing
#pattern_recognition
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
https://www.instagram.com/p/CJPSTRWpFDG/?igshid=si3mdifspwga
⚠️ اولین دوره جامع و تخصصی در ایران
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⭕️⭕️ فصل اول: مقدمه ای بر یادگیری ماشین و شناسایی الگو
⭕️⭕️ فصل دوم: طبقه بندهای پارامتری
🔺بیزین
🔺توزیع نرمال
🔺ماکزیمم شباهت
🔺حداقل فاصله اقلیدسی
🔺حداقل فاصله ماهالانوبیس
⭕️⭕️ فصل سوم: روشها و پارامترهای ارزیابی
🔺confusion matrix
🔺the hold out method
🔺K-fold cross validation
🔺leave one out validation
🔺 random subsampling validation
⭕️⭕️ الگوریتمهای غیر پارامتری
🔹 knn
🔹wknn
🔹knn / wknn in regression
🔺slp
🔺adaline
🔺MLP
🔹 Hard-margin SVM
🔹 Soft-margin SVM
🔹non-linear SVM
🔹 linear- SVR
🔹 non-linear SVR
⭕️⭕️ فصل پنجم: یادگیری جمعی
🔹 Voting
🔹 Stacking
🔹 Bagging
🔹 Boosting
🔻 KNN ada-boost
🔺 SLP ada-boost
🔻 ELM ada-boost
🔺 LDA ada-boost
🔻 TREE ada-boost
🔺 SVM ada-boost
⭕️⭕️ فصل ششم: کاهش بعد
🔹 PCA
🔹 LDA
🔻 PCA as a classifier
🔺 LDA as a classifier
⭕️⭕️ فصل هفتم: انتخاب ویژگی
🔹 T-test
🔹 Anova
🔹 FDR
🔹 Mutual information
🔹 SFFS
⭕️⭕️ فصل هشتم: خوشه بندی
🔹 Fcm
🔹 K-means
🔹 G-means
✅در طول دوره علاوه بر آموزش تئوری و پیادهسازی روشها ، پروژه های تخصصی زیادی انجام شده است که دوستان میتوانند در پروژه های درسی یا پایان نامه خودشون استفاده کنند👌😊
#یادگیری_ماشین
#شناسایی_الگو
#machinelearing
#pattern_recognition
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
https://www.instagram.com/p/CJPSTRWpFDG/?igshid=si3mdifspwga
onlinebme
Video
This media is not supported in your browser
VIEW IN TELEGRAM
✅ رباتی که میتواند Jenga بازی کند!
⭕ آلبرتو رودریگز ، استادیار مهندسی مکانیک و اعضای آزمایشگاه MCube MIT توانسته رباتی بسازد که بتواند با کمک یادگیری ماشین نحوه بازی کردن جنگا(Jenga) را یاد بگیرد.
🔷️ برخلاف الگوریتمهای یادگیری ماشین رایج، این ربات برای تخمین بهترین حرکت بعدی، از داده زیادی استفاده نمیکند!
🔶️ این ربات از یک مدل سلسله مراتبی استفاده میکند و همین باعث میشود که به خوبی قطعات را به نرمی جدا کند.
🔷️این فناوری می تواند در رباتها برای اهداف مختلف مورد استفاده قرار گیرد، عمده این موارد در ساخت خطوط مونتاژ خواهد بود!
#هوش_مصنوعی #یادگیری_ماشین
@onlinebme
⭕ آلبرتو رودریگز ، استادیار مهندسی مکانیک و اعضای آزمایشگاه MCube MIT توانسته رباتی بسازد که بتواند با کمک یادگیری ماشین نحوه بازی کردن جنگا(Jenga) را یاد بگیرد.
🔷️ برخلاف الگوریتمهای یادگیری ماشین رایج، این ربات برای تخمین بهترین حرکت بعدی، از داده زیادی استفاده نمیکند!
🔶️ این ربات از یک مدل سلسله مراتبی استفاده میکند و همین باعث میشود که به خوبی قطعات را به نرمی جدا کند.
🔷️این فناوری می تواند در رباتها برای اهداف مختلف مورد استفاده قرار گیرد، عمده این موارد در ساخت خطوط مونتاژ خواهد بود!
#هوش_مصنوعی #یادگیری_ماشین
@onlinebme