onlinebme
4.82K subscribers
1.48K photos
574 videos
345 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی

جلسه ششم: تئوری و پیاده سازی FBCSP

خلاصه: یکی از ایرادات فیلتر مکانیCSP اینه که برای فیلترینگ داده در ابتدا یک باند فرکانسی خاص مشخص میشود و این در حالی هست که در هر فرد این رنج میتونه متغیر باشه. فیلتر مکانی FBCSP یک روش معروفی هست که این ایراد CSP رو برطرف میکنه. در این جلسه الگوریتم FBCSP را طبق یک مقاله تخصصی در متلب #مرحله_به_مرحله پیاده سازی کرده و روی داده های واقعی BCI Competition اعمال میکنیم. در ادامه این الگوریتم یک روش #انتخاب_ویژگی هم پیاده سازی کرده ایم تا از بین ویژگی های بدست آمده، بهترین ویژگی ها انتخاب شوند.

🧑‍💻مدرس: محمد نوری زاده چرلو

🌀جهت تهیه پکیج آموزشی به سایت زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

#پردازش_سیگنال
#پیاده‌سازی_مقاله
#پروژه_عملی
#واسط_مغز_کامپیوتر
#یادگیری_ماشین
#فیلترهای_مکانی_مشترک
#csp #bci #EEG #FBCSP
#Machine_learning

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی

جلسه هشتم: انجام پروژه های چندکلاسه تسک تصور حرکتی

خلاصه: الگوریتم csp برای داده های دو کلاسه ارائه شده و اگه بخواهیم برای داده های #چندکلاسه استفاده کنیم لازمه که در این الگوریتم رو برای داده های چندکلاسه با یک تکنیکی #تعمیم دهیم.
در این جلسه در ابتدا نحوه تبدیل داده به فرمت gdf سایت bci competition رو به فرمت .mat توضیح میدهیم سپس الگوریتم csp رو با دو روش ذکر شده در #مقاله مرتبط تعمیم میدهیم و همچنین کلاسبند SVM رو برای داده های چندکلاسه تعمیم میدهیم و یک پروژه عملی با کمک این الگوریتم طبق مقاله تخصصی انجام میدهیم تا با نحوه انجام پروژه های چند کلاسه هم آشنا شوید.

🧑‍💻مدرس: محمد نوری زاده چرلو

🌀جهت تهیه پکیج آموزشی به سایت زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
#پردازش_سیگنال
#پیاده‌سازی_مقاله
#پروژه_عملی
#واسط_مغز_کامپیوتر
#یادگیری_ماشین
#فیلترهای_مکانی_مشترک
#csp #bci #EEG #GDF
#Machine_learning

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
فصل 4(بخش دوم): تئوری و پیاده‌سازی ماشین بردار پشتیبان(SVM) و شبکه عصبی پرسپترون چندلایه (MLP) 🔹شبکه عصبی پرسپترون تک لایه ▪️ قانون یادگیری پرسپترون ▪️ قانون یادگیری LMS 🔻وینرهاف 🔺گرادیان نزولی 🔹 شبکه عصبی پرسپترون چندلایه 🔺 قانون یادگیری پس انتشار…
🎁پکیج جامع فصل های اول تا چهارم پترن و یادگیری ماشین ( از بیزین تا SVM)


این پکیج شامل تمام مباحث آموزش داده شده در 4 فصل دوره شناسایی الگو و یادگیری ماشین است.

فصل اول: مقدمه ای بر شناسایی الگو و یادگیری ماشین

فصل دوم: کلاسبندهای پارامتری
🔹بیزین
🔸ماکزیمم شباهت
🔹حداقل فاصبله اقلیدسی
🔸حداقل فاصله ماهالانوبیس

فصل سوم: روشهای ارزیابی و پارمترهای ارزیابی 

⚫️پارامترهای ارزیابی مسائل کلاسبندی (ماتریس کانفیوژن، صحت، حساسیت، اختصاصیت کلاسبندی)
🟢 روش ارزیابی the hold out method
🔴 روش ارزیابی k-fold cross validation
🟣 روش ارزیابی leave one out
🟢 روش ارزیابی random sub-sampling

⚫️نحوه انتخاب مدل بهینه با روش cross validation

فصل چهارم: الگوریتمهای غیرپارامتری در بحثهای رگرسیون و کلاسبندی

🔶الگوریتم نزدیکترین همسایه(knn)
🔷الگوریتم نزدیکترین همسایه وزندار (wknn)
🔶شبکه عصبی پرسپترون تک لایه
🔷شبکه عصبی پرسپترون چندلایه (MLP)
🔶ماشین بردار پشتیبان خطی(SVM)
🔷ماشین بردار پشتیبان غیرخطی(nonlinear SVM)
🟢ماشین بردار پشتیبان در مسائل رگرسیون (SVR)

 🌀 جهت تهیه پکیج آموزشی چهار فصل دوره پترن و یادگیری ماشین به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/season-1-4-packages-pattern-recognition/

#پترن #یادگیری_ماشین
#پروژه_عملی #پیاده‌سازی_مقاله #پروژه‌های_درسی #پایان_نامه
#پروژه_محور

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🎁🎁 پکیجهای آموزشی موجود در سایت🎁🎁

🔲 ▪️اصول برنامه‌نویسی متلب (رایگان)
مدت دوره: 16 ساعت
🌀 https://onlinebme.com/course/matlab/

🔲▪️ پیاده سازی گام به گام شبکه های عصبی
مدت دوره: 25 ساعت
🌀 https://onlinebme.com/course/neural-networks-in-matlab/

🔲 ▪️پترن و یادگیری ماشین
مدت دوره: 70 ساعت
🌀 https://onlinebme.com/product/season-1-4-packages-pattern-recognition/

🔲▪️ پردازش سیگنال مغزی(EEG) مبتنی بر تسک تصور حرکتی (BCI)
مدت دوره: 21 ساعت
🌀 https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

دوره های #تخصصی و #پروژه_محور


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 فصل پنجم(جلسه اول ): مقدمه ای بر یادگیری جمعی (Ensemble learning)  🌀 جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇👇👇 https://onlinebme.com/product/ensemble-learning/ #اولین دوره تخصصی در ایران 🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی @onlinebme
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی شناسایی الگو و یادگیری ماشین
(#اولین دوره تخصصی در ایران)

🟣 فصل پنجم(جلسه دوم ): پیاده سازی تکنیک voting در مباحث طبقه بندی و رگرسیون
#یادگیری_جمعی #پروژه_محور
#Ensemble_learning
#Classification
#regression
#svm #knn #tree #Bayesian #LDA #Perceptron
 🌀 جهت کسب اطلاعات بیشتر به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/ensemble-learning/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
دوستان و همراهان عزیز
سلام
احتمالا خیلی از شما در جریان رویکرد و برنامه آموزشی ما هستید.
چندین دوره فعلا آماده شده است و الان هم دوره جامع "پترن و یادگیری ماشین" درحال آماده سازی است.
پنج فصل این دوره آماده شده که شامل 46 جلسه است( حدودا 90 ساعت ویدیوی آموزشی) و سه فصل آن باقی مونده که در حال آماده سازی است.

دوره "پترن و یادگیری ماشین" یکی از مهمترین دوره ها است. بنابراین سعی کردم تمام مباحث پایه و اساسی رو در این دوره ارائه بدم.
یه سری دوستان درخواست کرده بودند که ضبط سایر دوره هارو استارت بزنم، مثل دوره پردازش سیگنال و پردازش تصویر. باید خدمتتون عرض کنم که این دوره ها به ترتیب ضبط خواهند شد، ولی لازمه ذکر کنم که دوره پترن و یادگیری ماشین اساس اکثر پروژه ها چه در حوزه پردازش تصویر و چه در حوزه پردازش سیگنال است. به همین دلیل سعی کردم اول دوره پترن و یادگیری ماشین رو آموزش بدم.

💡دوستانی که تمایل دارند در دوره های پیش رو بازدهی بیشتری داشته باشند پیشنهاد میکنم حتما در ابتدا دوره پترن و یادگیری ماشین رو نگاه کنند.
چون تمام #ابزار لازم جهت #پیاده_سازی #مقالات و #پروژه ها در این دوره به صورت تخصصی آموزش داده شده و درواقع مرحله ی آماده سازی شما برای پروژه ها و مقالات تخصصی در هر حوزه است.

انشاالله بعد تکمیل این دوره، دوره های #پروژه_محور و #مقاله_محور شروع خواهند شد.
که در ابتدا دوره های پردازش سیگنال مثل eeg ، ssvep p300، ECG و EMG ضبط میشن بعد دوره پردازش تصویر ضبط خواهد شد.

ممنون که همراهمون هستید🙏🌹❤️
🎁🎁 پکیجهای آموزشی موجود در سایت🎁🎁

🔲 ▪️اصول برنامه‌نویسی متلب (رایگان)
مدت دوره: 16 ساعت
🌀 https://onlinebme.com/course/matlab/

🔲▪️ پیاده سازی گام به گام شبکه های عصبی
مدت دوره: 25 ساعت
🌀 https://onlinebme.com/course/neural-networks-in-matlab/

🔲 ▪️پترن و یادگیری ماشین (فصل یک تا 4): از بیزین تا SVM
مدت دوره: 75 ساعت
🌀 https://onlinebme.com/product/season-1-4-packages-pattern-recognition/

🔲 ▪️پترن و یادگیری ماشین (فصل 5): یادگیری جمعی
مدت دوره: 18 ساعت
🌀 https://onlinebme.com/product/ensemble-learning/


🔲▪️ پردازش سیگنال مغزی(EEG) مبتنی بر تسک تصور حرکتی (BCI)
مدت دوره: 21 ساعت
🌀 https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

دوره های #تخصصی و #پروژه_محور


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🎁🎁 پکیجهای آموزشی موجود در سایت🎁🎁

🔲 ▪️اصول برنامه‌نویسی در متلب (رایگان)
مدت دوره: 16 ساعت
🌀 https://onlinebme.com/course/matlab/

🔲▪️ پیاده سازی گام به گام شبکه های عصبی
مدت دوره: 25 ساعت
🌀 https://onlinebme.com/course/neural-networks-in-matlab/

🔲 ▪️پترن و یادگیری ماشین (فصل یک تا 4): از بیزین تا SVM
مدت دوره: 75 ساعت
🌀 https://onlinebme.com/product/season-1-4-packages-pattern-recognition/

🔲 ▪️پترن و یادگیری ماشین (فصل 5): یادگیری جمعی
مدت دوره: 18 ساعت
🌀 https://onlinebme.com/product/ensemble-learning/

🔲 ▪️پترن و یادگیری ماشین (فصل ۶): کاهش بعد
مدت دوره: ۱۱ ساعت
🌀 https://onlinebme.com/product/dimension-reduction-using-lda-pca/

🔲▪️ پردازش سیگنال مغزی(EEG) مبتنی بر تسک تصور حرکتی (BCI)
مدت دوره: 21 ساعت
🌀 https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

دوره های #تخصصی و #پروژه_محور


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🎁🎁 پکیجهای آموزشی موجود در سایت🎁🎁

▪️اصول برنامه‌نویسی در متلب (رایگان)
مدت دوره: 16 ساعت
🌀 https://onlinebme.com/course/matlab/

▪️ پیاده سازی گام به گام شبکه های عصبی
مدت دوره: 25 ساعت
🌀 https://onlinebme.com/course/neural-networks-in-matlab/

▪️پترن و یادگیری ماشین (فصل یک تا 4): از بیزین تا SVM
مدت دوره: 75 ساعت
🌀 https://onlinebme.com/product/season-1-4-packages-pattern-recognition/

▪️پترن و یادگیری ماشین (فصل 5): یادگیری جمعی
مدت دوره: 18 ساعت
🌀 https://onlinebme.com/product/ensemble-learning/

▪️پترن و یادگیری ماشین (فصل ۶): کاهش بعد
مدت دوره: ۱۱ ساعت
🌀 https://onlinebme.com/product/dimension-reduction-using-lda-pca/

▪️پترن و یادگیری ماشین (فصل ۷): انتخاب ویژگی
مدت دوره: ۱۶ ساعت
🌀https://onlinebme.com/product/season07-featrue-selection/


▪️ پردازش سیگنال مغزی(EEG) مبتنی بر تسک تصور حرکتی (BCI)
مدت دوره: 21 ساعت
🌀 https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

دوره های #تخصصی و #پروژه_محور

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
سرفصل دوره جامع پردازش سیگنال  مغزی(eeg) #اولین دوره تخصصی در ایران 1⃣ فصل اول: مقدمه 🔻  مقدمه ای بر پردازش سیگنال  EEG از دید شناسایی الگو 🔺 مقدمه ای بر الکتروانسفالوگرافی(eeg) 2⃣ فصل دوم: پردازش سیگنال eeg در حوزه زمان 🔹    معرفی پایگاه داده صرع و نحوه…
در این دوره تمامی مباحث تخصصی و کاربردی پردازش سیگنال eeg از پایه و به صورت مرحله به مرحله آموزش داده شده بر روی سیگنال eeg پیاده سازی شده است.

این دوره کاملا پروژه محور هست و از همان ابتدا وارد بحثهای تخصصی شده و هر مبحثی که آموزش داده میشود، مستقیما روی سیگنال اعمال شده و نتایج به صورت عملی در پروژه ها بررسی می شود.
در این دوره پروژه های زیادی طبق مقالات تخصصی انجام شده که علاقه مندان به این حوزه، با کمک این پروژه ها و کدهای پیاده سازی شده، به راحتی میتوانند #پروژه های_تخصصی خود را جهت انجام #پروژه #پایان_نامه و نوشتن #مقالات تخصصی خود استفاده کنند و یک کار و خوب با کیفیت ارائه دهند.

تمام موارد مورد نیاز در انجام یک پروژه با کیفیت و تخصصی در این دوره طبق مقالات تخصصی آموزش داده شده است و علاقه مندان میتوانند از کدهای پیاده سازی شده در دوره استفاده کرده و پروژه های تخصصی خودشان را انجام دهند.
 
🔺در این دوره آموزش داده ایم که چطور میتوان از سیگنال eeg در سه حوزه مختلف زمان، فرکانس و ویولت ویژگی استخراج کرد.

🔺هر سه حوزه به طور مفصل بررسی شده و مباحث لازم جهت پردازش سیگنال در سه حوزه آموزش داده شده است. در ادامه ویژگیهای استخراج شده از سیگنال باهم ترکیب کرده ایم و  سپس با کمک روشهای انتخاب ویژگی از بین ویژگیهای استخراج شده، بهترین ویژگیها رانتخاب کرد و از آنها برای طبقه بندی سیگنال eeg استفاده کرده ایم. نتایج بدست آمده نشان میدهند که رویکردهای ارائه شده همانند مقالات معتبر و حتی بهتر از آنها هستند.
در ادامه دوره برای اینکه دوستان بتوانند در پروژه های خودشان دقت کار را بیشتر هم بکنند مباحث انتخاب کانالهای و باندهای فرکانسی بهینه را طبق مقالات تخصصی آموزش داده ایم که نتایج طبقه بندی را به طور قابل توجهی افزایش میدهند.

🔹برای اینکه دوستان کار با داده های مختلف آشنا شوند در این دوره از دو پایگاه داده بسیار معروف استفاده شده است.(داده صرع بن آلمان و تصور حرکتی bci competition)  
در این دوره از دو پایگاه داده استفاده شده تا دوستان هم کار با داده های مختلف آشنا شوند و همچنین بتوانند از دانش بدست آمده در دوره حوزه های مختلف استفاده کنند. نتایج بدست آمده در هر دو پایگاه داده نشانگر کیفیت و اهمیت روشهای آموزش داده شده است.

تمام محتوای این دوره طبق تجربه چندین ساله ی آموزشی و پروژه ای خودم از طریق مطالعه و پیاده سازی مقالات تخصصی پردازش سیگنال مغزی(eeg) آماده شده است و تمامی مباحث بسیار کاربردی و مهم هستند. این دوره رو برای برای همه گروهایی که میخواهند به صورت تخصصی کارهای تحقیقاتی بر روی سیگنال eeg انجام دهند پیشنهاد می کنم.
این دوره برای همه دانشجویان علاقه مند به پردازش سیگنال از قبیل پزشکی، روان شناسی، علوم اعصاب، به خصوص #مهندسی_پزشکی و #هوش_مصنوعی مناسب است.

🔸این دوره بسیار جامع و کاملتر از دوره حضوری هست و این به این خاطر هست در دوره حضوری به خاطر فرصت محدودی که داشتیم نمیتوانستیم تمامی مباحث را در دوره آموزش دهیم.
در این دوره سعی شده تمامی مباحث مورد نیاز جهت پردازش تخصصی سیگنال eeg آموزش داده شود. و دوره کامل و جامعی برای شما باشد.
امیدوارم این دوره برایتان مفید باشد و بتوانید پروژه های تخصصی خودتان در این زمینه انجام دهید.
امیدوارم از مطالعه این دوره لذت ببرید.
محمد نوری زاده چرلو

 ⭕️جزئیات بیشتر 👇
🌀https://onlinebme.com/product/eeg-signal-processing/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
آموزش پیاده‌سازی مقاله فیلترهای مکانی طیفی مشترک(cssp) فیلترهای مکانی طیفی مشترک (common spetio-spectral patterns) یکی از الگوریتمهای بهبودیافته‌ی csp است. یکی از ایرادات فیلتر مکانی مشترک(csp) این است که هنگام محاسبه فیلترهای مکانی، اطلاعات طیفی را در…
پیاده سازی مقاله فیلترهای مکانی مشترک رگوله شده(Regularized CSP)

یکی از معروفترین روشهای استخراج ویژگی در واسط مغز و کامپیوتر مبتنی بر تسک تصور حرکتی، فیلترهای مکانی مشترک(CSP) هست. CSP علارغم کارایی خیلی خوبی که دارد، به نویز بسیار حساس هست و احتمال overfitting بالایی دارد. برای حل این مشکل الگوریتم regularized CSP مطرح شده است. در این دوره الگوریتم RCSP طبق یک مقاله تخصصی به صورت مرحله به مرحله پیاده سازی شده و عملکرد آن در یک پروژه عملی مورد ارزیابی قرار می‌گیرد.

⭕️ جزئیات بیشتر👇👇
https://onlinebme.com/product/regularized-common-spatial-patterns

#پیاده‌سازی_مقاله #پروژه_محور

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme