onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیادهسازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#پیش_بینی_میزان_آلودگی_هوا
#رگرسیون
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#پیش_بینی_میزان_آلودگی_هوا
#رگرسیون
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیادهسازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
5⃣ نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
#نرخ_یادگیری
#ثابت #متغیر_با_زمان
#search_then_converge
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #تشخیص_سرطان_سینه
#پیش_بینی_میزان_آلودگی_هوا
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
5⃣ نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
#نرخ_یادگیری
#ثابت #متغیر_با_زمان
#search_then_converge
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #تشخیص_سرطان_سینه
#پیش_بینی_میزان_آلودگی_هوا
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 5⃣ نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول) #نرخ_یادگیری #ثابت #متغیر_با_زمان #search_then_converge #پرسپترون_چندلایه ،…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
#نرخ_یادگیری #دلتا_دلتا
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
#نرخ_یادگیری #دلتا_دلتا
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم) ✍ همانطور که در جلسه پنجم توضیح…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
#نرخ_یادگیری #دلتا_بار_دلتا
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
#نرخ_یادگیری #دلتا_بار_دلتا
#پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی،
#رگرسیون
#طبقهبندی
#کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم) #نرخ_یادگیری #دلتا_بار_دلتا…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
✍ در جلسه ششم شروط مورد نیاز جهت تعیین #نرخ_یادگیری بهینه را توضیح داده و سپس تئوری الگوریتم یادگیری #دلتا_دلتا را در متلب به صورت #گام_به_گام پیادهسازی کردیم. و ایرادات اساسی این الگوریتم را توضیح دادیم. در این الگوریتم با اینکه 4 شرط اساسی برای تعیین نرخ یادگیری گنجانده شده بود ولی مشکل اصلی این الگوریتم در نحوه #افزایش و #کاهش نرخ یادگیری است. برای اینکه نرخ یادگیری بهینه ای داشته باشیم لازم است که در جاهایی که #شیب_خطا در چند تکرار متوالی یکسان است نرخ یادگیری به صورت خطی و آهسته زیاد کنیم و از طرفی زمانی که علامت مشتق تابع هزینه در چندین تکرار متوالی متفاوت است لازم است که نرخ یادگیری سریع و به صورت #غیرخطی کم شود تا حالت نوسانی و ناپایدار پیش نیاید. الگوریتم دلتا دلتا همچنین قابلیتی ندارد و در نتیجه نرخ یادگیری بهینه که اساس یادگیری پس انتشار خطا است، را نمیتواند تعیین کند. الگوریتم دلتا بار دلتا برای حل این مسئله مطرح شده است که در این جلسه تئوری آن گفته شده و در متلب پیادهسازی می کنیم و در انتها برای اینکه با قابلیت این الگوریتم آشنا شوید و همچنین بتوانید از این الگوریتم در پروژههای عملی خودتان استفاده کنید چندین پروژه عملی از قبیل از جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه انجام شده است و همچنین یک پروژه کلاسبندی #سه_کلاسه iris (#گل_زنبق) انجام شده است تا شما در انجام پروژه های چندکلاسه نیز مشکلی نداشته باشید. داده iris یک داده سه کلاسه معروفی است که آقای #فیشر(Fisher) معرفی کرده اند و یک داده مناسب برای #ارزیابی مدلهای #یادگیری_ماشین است. ما در این جلسه هر سه پروژه را به صورت مرحله به مرحله در متلب پیاده سازی میکنیم.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
✍ در جلسه ششم شروط مورد نیاز جهت تعیین #نرخ_یادگیری بهینه را توضیح داده و سپس تئوری الگوریتم یادگیری #دلتا_دلتا را در متلب به صورت #گام_به_گام پیادهسازی کردیم. و ایرادات اساسی این الگوریتم را توضیح دادیم. در این الگوریتم با اینکه 4 شرط اساسی برای تعیین نرخ یادگیری گنجانده شده بود ولی مشکل اصلی این الگوریتم در نحوه #افزایش و #کاهش نرخ یادگیری است. برای اینکه نرخ یادگیری بهینه ای داشته باشیم لازم است که در جاهایی که #شیب_خطا در چند تکرار متوالی یکسان است نرخ یادگیری به صورت خطی و آهسته زیاد کنیم و از طرفی زمانی که علامت مشتق تابع هزینه در چندین تکرار متوالی متفاوت است لازم است که نرخ یادگیری سریع و به صورت #غیرخطی کم شود تا حالت نوسانی و ناپایدار پیش نیاید. الگوریتم دلتا دلتا همچنین قابلیتی ندارد و در نتیجه نرخ یادگیری بهینه که اساس یادگیری پس انتشار خطا است، را نمیتواند تعیین کند. الگوریتم دلتا بار دلتا برای حل این مسئله مطرح شده است که در این جلسه تئوری آن گفته شده و در متلب پیادهسازی می کنیم و در انتها برای اینکه با قابلیت این الگوریتم آشنا شوید و همچنین بتوانید از این الگوریتم در پروژههای عملی خودتان استفاده کنید چندین پروژه عملی از قبیل از جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه انجام شده است و همچنین یک پروژه کلاسبندی #سه_کلاسه iris (#گل_زنبق) انجام شده است تا شما در انجام پروژه های چندکلاسه نیز مشکلی نداشته باشید. داده iris یک داده سه کلاسه معروفی است که آقای #فیشر(Fisher) معرفی کرده اند و یک داده مناسب برای #ارزیابی مدلهای #یادگیری_ماشین است. ما در این جلسه هر سه پروژه را به صورت مرحله به مرحله در متلب پیاده سازی میکنیم.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پکیج کامل پیادهسازی گام به گام شبکههای عصبی - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
درس شبکه عصبی پایهی اصلی مباحث یادگیری ماشین و هوش مصنوعی است و هر دانشجوی مهندسی لازم است که در ابتدا با گذراندن این دوره وارد حوزه هوش مصنوعی و یادگیری ماشین شود. دوره های زیادی در کشور برگزار می شود ولی بیشتر این دوره ها تخصصی نیستند و یک سری ایراداتی…
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم) #نرخ_یادگیری #دلتا_بار_دلتا…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
#مرکز #سیگما #قضیه_کاور #kmeans
#پروژه_عملی #رگرسیون #طبقهبندی #کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
#مرکز #سیگما #قضیه_کاور #kmeans
#پروژه_عملی #رگرسیون #طبقهبندی #کلاسبندی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF) #مرکز #سیگما #قضیه_کاور #kmeans #پروژه_عملی #رگرسیون #طبقهبندی #کلاسبندی…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
✍ ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه شبکه عصبی توابع شعاعی پایه(radial basis function) را آموزش میدهیم. این شبکه یک شبکه عصبی 3 لایه است که ازیک لایه پنهان تشکیل شده است. از قضیه جالب #کاور برای حل مسائل پیچیده و غیرخطی استفاده میکند و کاربردهای زیادی در عمل دارد. شبکه عصبی rbf رویکرد متفاوتی نسبت به پرسپترون چندلایه دارد و با یک رویکرد بسیار ساده و جالب مسائل پیچیده را حل میکند. برخلاف mlp که در آن وزنهای سیناپسی تمام لایه ها باید محاسبه میشدند در این شبکه لایه ورودی به صورت #مستقیم و بدون اینکه #وزن_سیناپسی در بین دولایه باشد به لایه پنهان وصل شده است. نورونهای لایه پنهان این شبکه به عنوان یک #کرنل_غیرخطی (گوسیrbf) عمل میکنند و وظیفه #نگاشت داده از فضای #غیرخطی به فضای #خطی را برعهده دارند. هر یک از نورنهای لایه پنهان به یک #مرکز و #سیگمای بهینه نیاز دارند تا به درستی داده را نگاشت دهند، برای محاسبه مراکز و سیگمای مراکز چندین روش مثل الگوریتم خوشهبند #kmeans مطرح شده که طبق کتاب این روشها را توضیح داده و در متلب #پیادهسازی کرده و مزایا و معایب هر روش را با مثال عملی توضیح میدهیم. در این جلسه به صورت مختصر مفهوم #خوشهبندی توضیح داده شده و سپس عملکرد الگوریتم kmeans جهت تعیین مراکز را توضیح دادهایم. بعد از پیدا کردن مراکز و سیگماهای بهینه در این شبکه لازم است که وزنهای سیناپسی بین لایه پنهان و لایه خروجی نیز محاسبه شوند که برای محاسبه وزن سیناپسی بهینه سه روش #وینرهاف، #شبه_معکوس و #گرادیان_نزولی را توضیح داده و در متلب پیاده سازی کردهایم. و در انتها چندین مثال و پروژه عملی از قبیل جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) و #کلاسبندی داده سه کلاسه iris (#گل_زنبق) با استفاده از شبکه عصبی RBF انجام داده ایم که با کارایی این شبکه عصبی آشنا شده و بتوانید #پروژههای_عملی خودتان را با استفاده از این الگوریتم در متلب پیادهسازی کنید.
نکته: تمام مباحث این جلسه طبق مطالب فصل 7 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه هشتم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/rbf/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
✍ ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه شبکه عصبی توابع شعاعی پایه(radial basis function) را آموزش میدهیم. این شبکه یک شبکه عصبی 3 لایه است که ازیک لایه پنهان تشکیل شده است. از قضیه جالب #کاور برای حل مسائل پیچیده و غیرخطی استفاده میکند و کاربردهای زیادی در عمل دارد. شبکه عصبی rbf رویکرد متفاوتی نسبت به پرسپترون چندلایه دارد و با یک رویکرد بسیار ساده و جالب مسائل پیچیده را حل میکند. برخلاف mlp که در آن وزنهای سیناپسی تمام لایه ها باید محاسبه میشدند در این شبکه لایه ورودی به صورت #مستقیم و بدون اینکه #وزن_سیناپسی در بین دولایه باشد به لایه پنهان وصل شده است. نورونهای لایه پنهان این شبکه به عنوان یک #کرنل_غیرخطی (گوسیrbf) عمل میکنند و وظیفه #نگاشت داده از فضای #غیرخطی به فضای #خطی را برعهده دارند. هر یک از نورنهای لایه پنهان به یک #مرکز و #سیگمای بهینه نیاز دارند تا به درستی داده را نگاشت دهند، برای محاسبه مراکز و سیگمای مراکز چندین روش مثل الگوریتم خوشهبند #kmeans مطرح شده که طبق کتاب این روشها را توضیح داده و در متلب #پیادهسازی کرده و مزایا و معایب هر روش را با مثال عملی توضیح میدهیم. در این جلسه به صورت مختصر مفهوم #خوشهبندی توضیح داده شده و سپس عملکرد الگوریتم kmeans جهت تعیین مراکز را توضیح دادهایم. بعد از پیدا کردن مراکز و سیگماهای بهینه در این شبکه لازم است که وزنهای سیناپسی بین لایه پنهان و لایه خروجی نیز محاسبه شوند که برای محاسبه وزن سیناپسی بهینه سه روش #وینرهاف، #شبه_معکوس و #گرادیان_نزولی را توضیح داده و در متلب پیاده سازی کردهایم. و در انتها چندین مثال و پروژه عملی از قبیل جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) و #کلاسبندی داده سه کلاسه iris (#گل_زنبق) با استفاده از شبکه عصبی RBF انجام داده ایم که با کارایی این شبکه عصبی آشنا شده و بتوانید #پروژههای_عملی خودتان را با استفاده از این الگوریتم در متلب پیادهسازی کنید.
نکته: تمام مباحث این جلسه طبق مطالب فصل 7 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه هشتم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/rbf/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شبکه عصبی RBF(جلسه هشتم) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه شبکه عصبی توابع شعاعی پایه(radial basis function) را آموزش میدهیم. این شبکه یک شبکه عصبی 3 لایه است که از یک لایه پنهان تشکیل شده است. از قضیه جالب کاور برای حل مسائل پیچیده و غیرخطی…
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 8⃣ جلسه هشتم: پیادهسازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF) ✍ ما تا جلسه هفتم تمام تمرکزمون برروی شبکه عصبی معروف پرسپترون بود و این جلسه…
Media is too big
VIEW IN TELEGRAM
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
"فارغ التحصیل دانشگاه علم و صنعت تهران"
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
#پیادهسازی_مقاله
#پروژه_عملی
#رگرسیون
#طبقهبندی
#کلاسبندی
#روشهای_ارزیابی
#the_hold_out_method
#K_fold_cross_validation
#leave_one_out
#random_subsampling
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
"فارغ التحصیل دانشگاه علم و صنعت تهران"
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
#پیادهسازی_مقاله
#پروژه_عملی
#رگرسیون
#طبقهبندی
#کلاسبندی
#روشهای_ارزیابی
#the_hold_out_method
#K_fold_cross_validation
#leave_one_out
#random_subsampling
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
ضمن سپاس بی کران از دوست عزیزم میلاد شیری، و استادم، دکتر محمد رضا دلیری، مفتخرم که مقاله مان در مجله SIVP ( Signal, image and video processing ) پذیرفته شد🌹 An enhanced HMAX model in combination with SIFT algorithm for object recognition | SpringerLink…
.
مفتخر هستم كه به چاپ رسيدن پروژه عملي استفاده از ابزار هوشمند در صنعت حفاري هاي زير زميني با همكاري محققان و دوستان بنده در دانشگاه اول شهر رم را اطلاع رساني كنم.
عنوان:
Application of intelligent systems in the underground excavation industry
Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, 2019, Sendai, Japan.
نویسندگان:
Ramezanshirazi, M, Cherloo,M, Zarrin
از اینکه تحقیقات روی یک موضوع صنعتی و عملی بود برایم بسیار باارزشمند هست و خوشحالم که کنار دوست خوبم جناب دکتر محسن شیرازی چنین تجربه ای بدست آوردم.
#حفاری_تونل در متروهای شهرم رم ایتالیا
#شبکههای_عصبی
#پیشبینی
#رگرسیون
#انتخاب_ویژگی
#پترن
@onlinebme
مفتخر هستم كه به چاپ رسيدن پروژه عملي استفاده از ابزار هوشمند در صنعت حفاري هاي زير زميني با همكاري محققان و دوستان بنده در دانشگاه اول شهر رم را اطلاع رساني كنم.
عنوان:
Application of intelligent systems in the underground excavation industry
Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, 2019, Sendai, Japan.
نویسندگان:
Ramezanshirazi, M, Cherloo,M, Zarrin
از اینکه تحقیقات روی یک موضوع صنعتی و عملی بود برایم بسیار باارزشمند هست و خوشحالم که کنار دوست خوبم جناب دکتر محسن شیرازی چنین تجربه ای بدست آوردم.
#حفاری_تونل در متروهای شهرم رم ایتالیا
#شبکههای_عصبی
#پیشبینی
#رگرسیون
#انتخاب_ویژگی
#پترن
@onlinebme
onlinebme
📺 دوره شناسایی آماری الگو و یادگیری ماشین فصل 4( بخش اول ): تئوری و پیاده سازی الگوریتم knn و الگوریتمهای بهبودیافته شده آن(wknn) تعداد جلسات: 8 مدت زمان: 12 ساعت مدرس: محمد نوری زاده چرلو جزییات بیشتر👇👇 https://onlinebme.com/product/k-nearest-neighbors/…
📦سرفصل مطالب مربوط به پیاده سازی الگوریتمهای مبتنی بر نزدیک ترین همسایه( knn , wknn, dwknn , knn in regression ):
⚪️تئوری تصمیم گیری کلاسبندهای متبنی بر نزدیکترین همسایه(knn)
⚫️پیادهسازی مرحله به مرحله کلاسبند knnمعرفی تولباکس آماده متلب( برای آن دسته از دوستانی که میخواهند فقط با ابزار کار کنند)
🔴انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم knn
🔵تئوری تصمیم گیری کلاسبند knn وزندار( wknn معرفی شده توسط دو مقاله اول که در جلسه دوم آموزش داده شده است)
⚪️ پیادهسازی مرحله به مرحله الگوریتم wknn ( پیاده سازی مقالات 1-2)
⚫️انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم wknn
🔴تئوری تصمیم گیری کلاسبند knn وزندار (wknn معرفی شده توسط سوم که در جلسه سوم آموزش داده شده است)
🔵 پیادهسازی مرحله به مرحله الگوریتم wknn ( پیاده سازی بخش اول مقاله 3)
⚪️انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم wknn
⚫️تئوری تصمیم گیری کلاسبند knn وزنداردوگانه (dwknn معرفی شده توسط سوم که در جلسه سوم آموزش داده شده است)
🔵پیادهسازی مرحله به مرحله الگوریتم dwknn( پیاده سازی بخش دوم مقاله 3)
🔴انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم DWKNN
✅ پروژه هایی که در این ویدیوهای انجام داده ایم به صورت زیر است:
🔹تشخیص سرطان سینه با استفاده از کلاسبندهای knn، wknn و dwknn
🔸تشخیص نوع گل زنبق(iris) با استفاده از کلاسبندهای knn، wknn و dwknn
🔹تشخیص بیماری پارکیسنون از روی راه رفتن افراد با استفاده از کلاسبندهای knn، wknn و dwknn
➖➖➖➖➖➖➖➖➖➖➖
🔬 آزمایشاتی که انجام داده ایم به صورت زیر است:
1- تعیین تعداد k بهینه برای کلاسبند knn
2- تعیین معیار فاصله مناسب برای کلاسبند knn
🔴 معیار هایی که در ویدیوها پیاده سازی کرده ایم به صورت زیر است:
🔻فاصله اقلیدسی(euclidean)
🔺فاصله بلوک شهری( city block)
🔻فاصله چبیشف(chebychev)
🔺فاصله مینکوفسکی (minkowski)
🔻فاصله کسینوسی (cosine)
🔺فاصله همبستگی (correlation)
3- بررسی عملکرد knn های وزندار
4- بررسی تاثیر k روی عملکرد knn و knnهای وزندار
5- تاثیر نرمال کردن ویژگی ها بر روی عملکرد الگوریتمهای knn
➖➖➖➖➖➖➖➖➖➖➖
💡 انجام مسائل #رگرسیون با الگوریتم knn
✅مباحثی که در جلسه آخر آموزش داده ایم به صورت زیر است:
🔹فرق بین کلاسبندی و رگرسیون با یک مثال ساده
🔹تئوری تصمیم گیری knn در مسائل رگرسیون
🔹پیاده سازی knn برای مسائل رگرسیون
🔹تئوری تصمیم گیری wknnدر مسائل رگرسیون
🔹پیاده سازی wknnبرای مسائل رگرسیون
🔴انجام یک پروژه عملی رگرسیون (پیش بینی میزان آلودگی هوا با استفاده از الگوریتمهای knn و wknn)
🔹بررسی معایب knn
➖➖➖➖➖➖➖➖➖➖➖
✅یک خبر خوب هم برای دوستان بدهیم و آن هم این است که برای هر #پروژه ای که انجام شده یک #گزارش کامل 20-30 صفحه ای در #word نوشته و کنار کدها و ویدیوهای آموزشی قرار داده ایم تا دوستان بتوانند از این گزارشها در #پروژههای_درسی و #پایان_نامه خود استفاده کنند.
💡روال گزراش نویسی به صورت زیر است:
🔹چکیده
🔸مقدمه
🔹توضیح تئوری الگوریتمها
🔸توضیح خط به خط کدهای پیادهسازی شده برای الگوریتمها
🔹توضیح پایگاه داده
🔸جمع بندی و آزمایشات
➖➖➖➖➖➖➖➖➖➖➖
تعداد جلسات: 8
مدت زمان: 12 ساعت
مدرس: محمد نوری زاده چرلو
#Knn, #wknn , #dwknn , #knn for #regression
#Distance
#weighted_knn
#کلاسبند_نزدیکترین_همسایه #تئوری #پیادهسازی #پیادهسازی_مقالات #پروژههای_عملی #پروژههای_درسی #کلاسبندی #رگرسیون
#شناسائی_الگو
#پترن
#یادگیری_ماشین
جزییات بیشتر👇👇
https://onlinebme.com/product/k-nearest-neighbors/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
⚪️تئوری تصمیم گیری کلاسبندهای متبنی بر نزدیکترین همسایه(knn)
⚫️پیادهسازی مرحله به مرحله کلاسبند knnمعرفی تولباکس آماده متلب( برای آن دسته از دوستانی که میخواهند فقط با ابزار کار کنند)
🔴انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم knn
🔵تئوری تصمیم گیری کلاسبند knn وزندار( wknn معرفی شده توسط دو مقاله اول که در جلسه دوم آموزش داده شده است)
⚪️ پیادهسازی مرحله به مرحله الگوریتم wknn ( پیاده سازی مقالات 1-2)
⚫️انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم wknn
🔴تئوری تصمیم گیری کلاسبند knn وزندار (wknn معرفی شده توسط سوم که در جلسه سوم آموزش داده شده است)
🔵 پیادهسازی مرحله به مرحله الگوریتم wknn ( پیاده سازی بخش اول مقاله 3)
⚪️انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم wknn
⚫️تئوری تصمیم گیری کلاسبند knn وزنداردوگانه (dwknn معرفی شده توسط سوم که در جلسه سوم آموزش داده شده است)
🔵پیادهسازی مرحله به مرحله الگوریتم dwknn( پیاده سازی بخش دوم مقاله 3)
🔴انجام یک مثال عملی بسیار ساده جهت آشنایی با عملکرد الگوریتم DWKNN
✅ پروژه هایی که در این ویدیوهای انجام داده ایم به صورت زیر است:
🔹تشخیص سرطان سینه با استفاده از کلاسبندهای knn، wknn و dwknn
🔸تشخیص نوع گل زنبق(iris) با استفاده از کلاسبندهای knn، wknn و dwknn
🔹تشخیص بیماری پارکیسنون از روی راه رفتن افراد با استفاده از کلاسبندهای knn، wknn و dwknn
➖➖➖➖➖➖➖➖➖➖➖
🔬 آزمایشاتی که انجام داده ایم به صورت زیر است:
1- تعیین تعداد k بهینه برای کلاسبند knn
2- تعیین معیار فاصله مناسب برای کلاسبند knn
🔴 معیار هایی که در ویدیوها پیاده سازی کرده ایم به صورت زیر است:
🔻فاصله اقلیدسی(euclidean)
🔺فاصله بلوک شهری( city block)
🔻فاصله چبیشف(chebychev)
🔺فاصله مینکوفسکی (minkowski)
🔻فاصله کسینوسی (cosine)
🔺فاصله همبستگی (correlation)
3- بررسی عملکرد knn های وزندار
4- بررسی تاثیر k روی عملکرد knn و knnهای وزندار
5- تاثیر نرمال کردن ویژگی ها بر روی عملکرد الگوریتمهای knn
➖➖➖➖➖➖➖➖➖➖➖
💡 انجام مسائل #رگرسیون با الگوریتم knn
✅مباحثی که در جلسه آخر آموزش داده ایم به صورت زیر است:
🔹فرق بین کلاسبندی و رگرسیون با یک مثال ساده
🔹تئوری تصمیم گیری knn در مسائل رگرسیون
🔹پیاده سازی knn برای مسائل رگرسیون
🔹تئوری تصمیم گیری wknnدر مسائل رگرسیون
🔹پیاده سازی wknnبرای مسائل رگرسیون
🔴انجام یک پروژه عملی رگرسیون (پیش بینی میزان آلودگی هوا با استفاده از الگوریتمهای knn و wknn)
🔹بررسی معایب knn
➖➖➖➖➖➖➖➖➖➖➖
✅یک خبر خوب هم برای دوستان بدهیم و آن هم این است که برای هر #پروژه ای که انجام شده یک #گزارش کامل 20-30 صفحه ای در #word نوشته و کنار کدها و ویدیوهای آموزشی قرار داده ایم تا دوستان بتوانند از این گزارشها در #پروژههای_درسی و #پایان_نامه خود استفاده کنند.
💡روال گزراش نویسی به صورت زیر است:
🔹چکیده
🔸مقدمه
🔹توضیح تئوری الگوریتمها
🔸توضیح خط به خط کدهای پیادهسازی شده برای الگوریتمها
🔹توضیح پایگاه داده
🔸جمع بندی و آزمایشات
➖➖➖➖➖➖➖➖➖➖➖
تعداد جلسات: 8
مدت زمان: 12 ساعت
مدرس: محمد نوری زاده چرلو
#Knn, #wknn , #dwknn , #knn for #regression
#Distance
#weighted_knn
#کلاسبند_نزدیکترین_همسایه #تئوری #پیادهسازی #پیادهسازی_مقالات #پروژههای_عملی #پروژههای_درسی #کلاسبندی #رگرسیون
#شناسائی_الگو
#پترن
#یادگیری_ماشین
جزییات بیشتر👇👇
https://onlinebme.com/product/k-nearest-neighbors/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شناسایی الگو(فصل4 بخش اول): کلاسبند نزدیکترین همسایه knn و الگوریتمهای بهبودیافته شده آن(wknn) - آکادمی آنلاین مهندسی پزشکی و هوش…
کلاسبندهای مبتنی بر نزدیکترین همسایهها(knn-wknn) یکی از کلاسبندهای معروف غیرپارامتری هستند و با یک رویکرد بسیار ساده و کارا از نمونههای همسایه برای دسته بندی داده جدید استفاده میکنند. این کلاسبندها پروسه آموزش ندارد و تنها دادههای آموزش را ذخیره کرده…