بطبع این دوره برای دوستان مهندسی پزشکی بسیار مفیدتر خواهد بود و به آنها دید بهتری از پروژه ها میدهد. پروژه هایی که طول دوره آموزش داده می شوند نتیجه چهار سال تجربه گروه مهندسی پزشکی دانشجویان علم و صنعت تهران هست و سعی کردیم پروژه های خوب و بروزی که امروزه در این رشته کار میکنند را انتخاب کنیم و براساس مقالات معتبر شبیه سازی کنیم.
بعد اتمام دوره انتظار داریم دوستان شرکت کننده دید بهتری از پروژه ها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند. این دوره برای اولین بار در ایران برگزار می شود و هدف اینه که دوستان به طور مناسب آموزش ببینند تا در شبیه سازی مقالات تخصصی در حوزه مهندسی پزشکی، در انجام پروژه پایان نامه مشکلی نداشته باشند. در این دوره ما نحوه کار با داده های مختلف را آموزش میدهیم و دوستان سختی کار با داده ها را دیگر تجربه نخواهند کرد.
💡هدف اصلی ما اینه که دوستان شرکت کننده بعد از اتمام دوره، بتوانند پایان نامشون رو خودشون انجام دهند و مشکلاتی از قبیل کار با داده، برنامه نویسی، تجزیه و تحلیل داده ها نداشته باشند.😊
💡تو این چند سال متوجه شدیم که بیشتر دوستان مهندسی پزشکی بیشتر مباحث را بلدند ولی در پیاده سازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند. 5 پروژه عملی از صفر تا صد در متلب پیاده سازی می شود و شرکت کنندگان با موضوعات مختلفی آشنا شده و کار با داده های مختلف پزشکی را یاد میگیرند.👌
✅ پروژه هایی که در طول دوره آموزش داده می شوند را در زیر خلاصه کرده ایم:
نکته: لازم به ذکر است که تمامی الگوریتمهای درس #شناسایی _آماری_الگو و #داده_کاوی را را روی این پروژه ها اعمال میکنیم و دوستان علاوه بریادگیری الگوریتمها، نحوه استفاده از الگوریتمها در #پروژه_های_عملی را نیز یاد میگیرند!
- کار با سیگنالهای مغزیِ eeg ( داده مربوط به صرع- داده های تصوری حرکتی- اسپایک(unit activity))
- کار با سیگنالهای قلبیِ ecg(داده های مربتط با آرتیمی های قلبی(داده استاندارد سایت فیزیونت))
- تشخیص بیماری #صرع از روی سیگنالهای EEG (داده استاندارد 5 کلاسه دانشگاه بن آلمان)، روشهای مختلف استخراج ویژگی در حوزه زمان، فرکانس، زمان فرکانس آشنا می شوند.
🔹 تمامی الگوریتمها درس پترن و داده کاوی روی این داده ها اعمال می شوند!
- کلاسبندی داده های تصوری و حرکتی EEG (واسط مغز و کامپیوترBCI)، در این پروژه الگوریتم معروف csp و fbcsp آموزش داده شده سپس روی داده اعمال میشوند.
الگوریتم csp یک الگوریتم معروفی است که برای کاهش تعداد کانالها در داده های تصوری حرکتی دوکلاسه استفاده میشود.
نحوه تعمیم این الگوریتم برای داده ها چندکلاسه را نیز آموزش میدهیم.
روشهای بهبود یافته دیگر csp برای دانشجویان به عنوان تمرین تعریف می شود.
- اسپایک سورتینگ با استفاده از دو روش مختلف
1- خوشه بندی (kmeans-fcm)
2-Template matching
🔹اسپایک سورتینگ یا همان کلاسترینگ (مرتب سازی)اسپایکها یک تکنیک رایج در میان دانشمندان علوم و اعصاب جهت مطالعه عملکرد مغز است و در سالیان اخیر برای درمان بیماریهای از قبیل صرع، فلج و از دست دادن حافظه استفاده می کنند.
برای بررسی بیماریها نیاز به داشتن اطلاعات درباره فعالیت تک تک نورون ها است. در ثبت خارج سلولی فعالیت چندین نورون همزمان ثبت می شود. برای تفکیک فعالیت نورونها از تکنیک اسپایک سورتینگ استفاده میکنند.
در این دوره مفاهیم ثبت داخل و خارج سلولی، تکنیکهای اسپایک سورتینگ را آموزش داده و یک پروژه عملی نیز انجام میدهیم!
- تشخیص بیماری های قلبی با استفاده از سیگنال ECG
🔹امروزه افراد زیادی از نارسایی قلبی رنج میبرند و اگر در زمان مناسب بیماریها تشخیص داده شود میتوان از اتفاقات ناگوار جلوگیری کرد. ثابت شده فعالیت الکتریکی قلب اطلاعات مفیدی درباره وضعیت سلامت قلب ارائه میدهد. پزشکان برای تشخیص بیماریهای قلبی از سیگنال ECG یا همان نوار قلبی استفاده می کنند. ولی مشکلی که اینجا هست اینه که بررسی نوار قلبی بسیار زمانبر و خسته کننده ست، از طرف دیگر ممکن است پزشک متخصص نباشد و تحلیل اشتباهی انجام دهد.
در این دوره نحوه کار با داده ECG و نحوه تجزیه و تحلیل داده ها را آموزش میدهیم تا بتوانیم مدلی دقیق (نزدیک به نظر پزشکان متخصص) و بسیار سریع(خودکار) طراحی کنیم.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
- برنامهنویسی در محیط متلب
- پیاده سازی تمامی الگوریتمهای مربوط به شناسایی الگو و داده کاوی
- پیاده سازی پروژههای مرتبط با رابط مغز و کامپیوتر
- پیاده سازی پروژههای مرتبط با علوم اعصاب محاسباتی
- شبیهسازی مقالات مرتبط با رشته مهندسی پزشکی بیوالکتریک
- انجام پایان نامه
➖➖➖➖➖
@IUST_Bioelecteric
بعد اتمام دوره انتظار داریم دوستان شرکت کننده دید بهتری از پروژه ها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند. این دوره برای اولین بار در ایران برگزار می شود و هدف اینه که دوستان به طور مناسب آموزش ببینند تا در شبیه سازی مقالات تخصصی در حوزه مهندسی پزشکی، در انجام پروژه پایان نامه مشکلی نداشته باشند. در این دوره ما نحوه کار با داده های مختلف را آموزش میدهیم و دوستان سختی کار با داده ها را دیگر تجربه نخواهند کرد.
💡هدف اصلی ما اینه که دوستان شرکت کننده بعد از اتمام دوره، بتوانند پایان نامشون رو خودشون انجام دهند و مشکلاتی از قبیل کار با داده، برنامه نویسی، تجزیه و تحلیل داده ها نداشته باشند.😊
💡تو این چند سال متوجه شدیم که بیشتر دوستان مهندسی پزشکی بیشتر مباحث را بلدند ولی در پیاده سازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند. 5 پروژه عملی از صفر تا صد در متلب پیاده سازی می شود و شرکت کنندگان با موضوعات مختلفی آشنا شده و کار با داده های مختلف پزشکی را یاد میگیرند.👌
✅ پروژه هایی که در طول دوره آموزش داده می شوند را در زیر خلاصه کرده ایم:
نکته: لازم به ذکر است که تمامی الگوریتمهای درس #شناسایی _آماری_الگو و #داده_کاوی را را روی این پروژه ها اعمال میکنیم و دوستان علاوه بریادگیری الگوریتمها، نحوه استفاده از الگوریتمها در #پروژه_های_عملی را نیز یاد میگیرند!
- کار با سیگنالهای مغزیِ eeg ( داده مربوط به صرع- داده های تصوری حرکتی- اسپایک(unit activity))
- کار با سیگنالهای قلبیِ ecg(داده های مربتط با آرتیمی های قلبی(داده استاندارد سایت فیزیونت))
- تشخیص بیماری #صرع از روی سیگنالهای EEG (داده استاندارد 5 کلاسه دانشگاه بن آلمان)، روشهای مختلف استخراج ویژگی در حوزه زمان، فرکانس، زمان فرکانس آشنا می شوند.
🔹 تمامی الگوریتمها درس پترن و داده کاوی روی این داده ها اعمال می شوند!
- کلاسبندی داده های تصوری و حرکتی EEG (واسط مغز و کامپیوترBCI)، در این پروژه الگوریتم معروف csp و fbcsp آموزش داده شده سپس روی داده اعمال میشوند.
الگوریتم csp یک الگوریتم معروفی است که برای کاهش تعداد کانالها در داده های تصوری حرکتی دوکلاسه استفاده میشود.
نحوه تعمیم این الگوریتم برای داده ها چندکلاسه را نیز آموزش میدهیم.
روشهای بهبود یافته دیگر csp برای دانشجویان به عنوان تمرین تعریف می شود.
- اسپایک سورتینگ با استفاده از دو روش مختلف
1- خوشه بندی (kmeans-fcm)
2-Template matching
🔹اسپایک سورتینگ یا همان کلاسترینگ (مرتب سازی)اسپایکها یک تکنیک رایج در میان دانشمندان علوم و اعصاب جهت مطالعه عملکرد مغز است و در سالیان اخیر برای درمان بیماریهای از قبیل صرع، فلج و از دست دادن حافظه استفاده می کنند.
برای بررسی بیماریها نیاز به داشتن اطلاعات درباره فعالیت تک تک نورون ها است. در ثبت خارج سلولی فعالیت چندین نورون همزمان ثبت می شود. برای تفکیک فعالیت نورونها از تکنیک اسپایک سورتینگ استفاده میکنند.
در این دوره مفاهیم ثبت داخل و خارج سلولی، تکنیکهای اسپایک سورتینگ را آموزش داده و یک پروژه عملی نیز انجام میدهیم!
- تشخیص بیماری های قلبی با استفاده از سیگنال ECG
🔹امروزه افراد زیادی از نارسایی قلبی رنج میبرند و اگر در زمان مناسب بیماریها تشخیص داده شود میتوان از اتفاقات ناگوار جلوگیری کرد. ثابت شده فعالیت الکتریکی قلب اطلاعات مفیدی درباره وضعیت سلامت قلب ارائه میدهد. پزشکان برای تشخیص بیماریهای قلبی از سیگنال ECG یا همان نوار قلبی استفاده می کنند. ولی مشکلی که اینجا هست اینه که بررسی نوار قلبی بسیار زمانبر و خسته کننده ست، از طرف دیگر ممکن است پزشک متخصص نباشد و تحلیل اشتباهی انجام دهد.
در این دوره نحوه کار با داده ECG و نحوه تجزیه و تحلیل داده ها را آموزش میدهیم تا بتوانیم مدلی دقیق (نزدیک به نظر پزشکان متخصص) و بسیار سریع(خودکار) طراحی کنیم.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
- برنامهنویسی در محیط متلب
- پیاده سازی تمامی الگوریتمهای مربوط به شناسایی الگو و داده کاوی
- پیاده سازی پروژههای مرتبط با رابط مغز و کامپیوتر
- پیاده سازی پروژههای مرتبط با علوم اعصاب محاسباتی
- شبیهسازی مقالات مرتبط با رشته مهندسی پزشکی بیوالکتریک
- انجام پایان نامه
➖➖➖➖➖
@IUST_Bioelecteric
💡دوره ی بعدی #مهرماه در #مشهد (به احتمال زیاد در دو دانشگاه مختلف) برگزار خواهد شد. دوستانی که قصد شرکت در دوره را دارند میتوانند برای پیش ثبت نام با شماره زیر تماس بگیرند.
0936-038-2687
@Bio_Engineerr
مدرس دوره: مهندس محمد نوری زاده چرلو
💡💡💡دوره ها #فشرده و در #دوهفته برگزار خواهند شد.
به دوستانی که هر دو دوره(دوره شبکه های عصبی در متلب- دوره جامع مهندسی پزشکی) را شرکت کنند 10 درصد #تخفیف تعلق میگیرد!
#متلب
#پایان_نامه
#شبیه_سازی_مقالات
#پروژه_درسی
#دوره
#شبکه_عصبی
#پترن
#داده_کاوی
#علوم_اعصاب
#واسط_مغز_کامپیوتر
#پروژه_عملی
➖➖➖➖➖
سایتمون رو هم دنبال کنید🙏🙏😊😊
http://matlabkhoone.ir
➖➖➖➖➖
@IUST_Bioelecteric
0936-038-2687
@Bio_Engineerr
مدرس دوره: مهندس محمد نوری زاده چرلو
💡💡💡دوره ها #فشرده و در #دوهفته برگزار خواهند شد.
به دوستانی که هر دو دوره(دوره شبکه های عصبی در متلب- دوره جامع مهندسی پزشکی) را شرکت کنند 10 درصد #تخفیف تعلق میگیرد!
#متلب
#پایان_نامه
#شبیه_سازی_مقالات
#پروژه_درسی
#دوره
#شبکه_عصبی
#پترن
#داده_کاوی
#علوم_اعصاب
#واسط_مغز_کامپیوتر
#پروژه_عملی
➖➖➖➖➖
سایتمون رو هم دنبال کنید🙏🙏😊😊
http://matlabkhoone.ir
➖➖➖➖➖
@IUST_Bioelecteric
سلام خدمت همه همراهان عزیز
بابت فعالیت کم کانال در چند روز اخیر عذرخواهی میکنیم 🙏🙏
✅ برای فصل جدید، برنامه های #ویژه ای تدارک دیده ایم😊
چند نفر به گروه تخصصی و آموزشمیون اضافه شده اند و قصد داریم تخصصی تر در کانال فعالیت کنیم.
در نظر سنجی های اخیر متوجه شدیم که اکثر اعضای کانال به پردازش تصویر علاقه مند هستند، لذا در فصل جدید، ویدیوهای آموزشی#رایگان برای پردازش تصویر در کانال قرار خواهیم داد.
💡مباحث کتاب پردازش تصویر #گونزالس رو کامل به صورت مختصر و مفید آموزش خواهیم داد.
💡آموزشهای ما #پروژه_محور خواهند بود و برای هر مبحث مثال و پروژه های مختلفی انجام خواهیم داد.
💡دوستان علاقه مند به شبکه های عصبی، داده کاوی، پترن میتوانند از مطالبی که در فصلهای قبل در کانال قرار داده شده استفاده کنند، مباحث جدید نیز در کانال قرار داده خواهد شد.
💡پردازش تصویر، به دو زبان برنامه نویسی #متلب و #پایتون آموزش داده خواهد شد.
💡از آنجا که در کانالمون برنامه نویسی پایتون آموزش داده نشده، در ابتدا، اصول برنامه نویسی در پایتون آموزش داده خواهد شد.
💡بدلیل استقبال شما از اخبار مرتبط با #هوش_مصنوعی و #مهندسی_پزشکی، هر هفته اخبار بروز و جدید در این حوزه ها در کانال قرار داده خواهد شد.
💡در فصلهای آتی، مباحثی که در بیو نوشته شده به صورت تخصصی در قالب ویدیوهای آموزشی رایگان در کانال قرار داده خواهد شد.
ممنون از همراهیتون🙏🙏🙏🌹🌹
برای تک تک شما عزیزان آرزوی موفقیت داریم❤️❤️
کانال تخصصی و آموزشی دانشجویان علم و صنعت تهران😊
➖➖➖➖➖
#هوش_مصنوعی
#مهندسی_پزشکی
#پردازش_تصویر
#پایتون
#متلب
#ویدیوی_آموزشی_رایگان
#پترن ( شناسایی آماری الگو )
#داده_کاوی
#پردازش_سیگنال
#شبکه_عصبی
#اخبار_مهندسی_پزشکی
#اخبار_هوش_مصنوعی
➖➖➖➖➖
@IUST_Bioelecteric
بابت فعالیت کم کانال در چند روز اخیر عذرخواهی میکنیم 🙏🙏
✅ برای فصل جدید، برنامه های #ویژه ای تدارک دیده ایم😊
چند نفر به گروه تخصصی و آموزشمیون اضافه شده اند و قصد داریم تخصصی تر در کانال فعالیت کنیم.
در نظر سنجی های اخیر متوجه شدیم که اکثر اعضای کانال به پردازش تصویر علاقه مند هستند، لذا در فصل جدید، ویدیوهای آموزشی#رایگان برای پردازش تصویر در کانال قرار خواهیم داد.
💡مباحث کتاب پردازش تصویر #گونزالس رو کامل به صورت مختصر و مفید آموزش خواهیم داد.
💡آموزشهای ما #پروژه_محور خواهند بود و برای هر مبحث مثال و پروژه های مختلفی انجام خواهیم داد.
💡دوستان علاقه مند به شبکه های عصبی، داده کاوی، پترن میتوانند از مطالبی که در فصلهای قبل در کانال قرار داده شده استفاده کنند، مباحث جدید نیز در کانال قرار داده خواهد شد.
💡پردازش تصویر، به دو زبان برنامه نویسی #متلب و #پایتون آموزش داده خواهد شد.
💡از آنجا که در کانالمون برنامه نویسی پایتون آموزش داده نشده، در ابتدا، اصول برنامه نویسی در پایتون آموزش داده خواهد شد.
💡بدلیل استقبال شما از اخبار مرتبط با #هوش_مصنوعی و #مهندسی_پزشکی، هر هفته اخبار بروز و جدید در این حوزه ها در کانال قرار داده خواهد شد.
💡در فصلهای آتی، مباحثی که در بیو نوشته شده به صورت تخصصی در قالب ویدیوهای آموزشی رایگان در کانال قرار داده خواهد شد.
ممنون از همراهیتون🙏🙏🙏🌹🌹
برای تک تک شما عزیزان آرزوی موفقیت داریم❤️❤️
کانال تخصصی و آموزشی دانشجویان علم و صنعت تهران😊
➖➖➖➖➖
#هوش_مصنوعی
#مهندسی_پزشکی
#پردازش_تصویر
#پایتون
#متلب
#ویدیوی_آموزشی_رایگان
#پترن ( شناسایی آماری الگو )
#داده_کاوی
#پردازش_سیگنال
#شبکه_عصبی
#اخبار_مهندسی_پزشکی
#اخبار_هوش_مصنوعی
➖➖➖➖➖
@IUST_Bioelecteric
onlinebme
جزئیات دوره جامع مهندسی پزشکی.pdf
💡✅ توضیحات تکمیلی دوره جامع مهندسی پزشکی:
✍️طی تجربیات چند سال گذشته متوجه شدیم که اکثر دانشجویان در مقطع کارشناسی ارشد و دکتری در انتخاب موضوع پایان نامه دچار مشکلات و سردرگمیهایی میشوند. یکی از دلایل اصلی سردرگمی دانشجویان مهندسی پزشکی در انتخاب موضوع پایاننامه، نداشتن #دید_کافی از این رشته است. برای مثال بسیاری از دانشجویان کارشناسی، رشته متفاوتی داشتهاند و در کارشناسی ارشد وارد رشته مهندسی پزشکی(بیوالکتریک) شدهاند که هیچ پیشزمینهای از این رشته ندارند و به علت محدودیت زمانی در ارشد گاها" در انتخاب موضوع پایاننامه که اصلیترین #بخش کارشناسی ارشد است و به نوعی #آینده_کاری دانشجو را تعیین میکند، دچار اشتباه میشوند.
🔺مشکل دیگر دانشجویان نداشتن تخصص کافی در پیادهسازی مقالات تخصصی و انجام تجزیه و تحلیل دادههای مهندسی پزشکی است.
کارشناسی ارشد دورهای کوتاه ولی پرپیچ و خمی است و در هر ترم دروس تخصصی ارائه میشود که در پایان ترم دانشجو باید یک #پروژه عملی برای درس موردنظر انجام دهد. اکثر #اساتید برای آمادهسازی دانشجویان جهت انجام پایاننامه، پروژههایی تعریف میکنند و دانشجویان باید طبق #مقالات_تخصصی پروژهها را انجام دهند.
ازطرف دیگه بسیاری از دانشجویان با دادههای مهندسی پزشکی آشنا نیستند لذا در انجام پروژه و #پیاده_سازی مقالات به مشکل میخورند.
📚دروس شناسایی آماری الگو و داده کاوی، جزء دروسی هستند که در اکثر دانشگاههای معتبر از جمله دانشگاههای تهران ارائه میشوند و در اکثر پروژههای مهندسی پزشکی از مباحث این دروس استفاده میشوند. دانشجویانی که این دروس را گذرانده باشند مطمئنا" در انجام پایاننامه خود #موفق خواهند بود.
در دوره جامع مهندسی پزشکی مباحث دو درس #پترن و #داده_کاوی به طور کامل آموزش داده میشوند و برای اینکه مطالب ملموستر شوند، الگوریتمها را روی دادههای واقعی مهندسی پزشکی اعمال میشوند. در واقع با یک #تیر دو #نشان می زنیم😃. در این دوره علاوه بر آموزش مباحث تئوری و عملی الگوریتمهای دو درس، پروژه های مختلفی آموزش داده میشود.
✅ این دوره تنها دورهای است که سعی کرده تمام مباحث مهندسی پزشکی را پوشش دهد!
⚠️ نکتهای که باید توجه شود این است که این دوره کاملا تخصصی است و مخصوص دانشجویان #ارشد و #دکتری طراحی شده است لذا برای دانشجویان کارشناسی توصیه نمیشود!
🌐 داده هایی که در این دوره استفاده می شود داده های مرتبط با مهندسی پزشکی و شرکتکنندگان علاوه بر یادگیری مباحث، با دادههای مهندسی پزشکی نیز آشنا میشوند.
◀️در این دوره ما #نحوه_کار با دادههای مختلف را آموزش میدهیم و دانشجویان دیگر #سختی کار با دادهها را تجربه نخواهند کرد😊.
💯 بطبع این دوره برای دانشجویان مهندسی پزشکی بسیار مفیدتر خواهد بود و به آنها دید بهتری از پروژه ها میدهد ولی دانشجویانی که قصد یادگیری مباحث درس پترن و داده کاوی را دارند نیز میتوانند در این دوره شرکت کنند.
🌀پروژههایی که طول دوره آموزش داده می شوند نتیجه چهار سال #تجربه گروه مهندسی پزشکی دانشجویان علم و صنعت تهران هست و سعی بر این است که پروژههای خوب و بروزی که امروزه در این رشته کار میکنند را انتخاب کنیم و براساس مقالات معتبر شبیهسازی کنیم.
✳️بعد اتمام دوره انتظار داریم دانشجویان دید بهتری از پروژهها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند، در #شبیه_سازی_مقالات تخصصی حوزه مهندسی پزشکی و در انجام #پروژه_پایاننامه مشکلی نداشته باشند.
🔺در این چند سال متوجه شدیم که اکثر دانشجویان مهندسی پزشکی مباحث را بلدند ولی در پیادهسازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند و چگونه یک پروژه را از #صفرتاصد در #متلب به طور تخصصی انجام دهند.
🌀 5 پروژه عملی از صفر تا صد در متلب پیادهسازی میشود و شرکتکنندگان با موضوعات مختلفی آشنا شده و کار با دادههای مختلف مهندسیی پزشکی را یاد میگیرند.
⏪برای اطلاع از جزئیات مباحث و پروژه هایی که در این دوره آموزش داده میشوند، فایل جزئیات دوره(PDF ) را مطالعه کنید.
➖➖➖➖➖
@IUST_Bioelecteric
✍️طی تجربیات چند سال گذشته متوجه شدیم که اکثر دانشجویان در مقطع کارشناسی ارشد و دکتری در انتخاب موضوع پایان نامه دچار مشکلات و سردرگمیهایی میشوند. یکی از دلایل اصلی سردرگمی دانشجویان مهندسی پزشکی در انتخاب موضوع پایاننامه، نداشتن #دید_کافی از این رشته است. برای مثال بسیاری از دانشجویان کارشناسی، رشته متفاوتی داشتهاند و در کارشناسی ارشد وارد رشته مهندسی پزشکی(بیوالکتریک) شدهاند که هیچ پیشزمینهای از این رشته ندارند و به علت محدودیت زمانی در ارشد گاها" در انتخاب موضوع پایاننامه که اصلیترین #بخش کارشناسی ارشد است و به نوعی #آینده_کاری دانشجو را تعیین میکند، دچار اشتباه میشوند.
🔺مشکل دیگر دانشجویان نداشتن تخصص کافی در پیادهسازی مقالات تخصصی و انجام تجزیه و تحلیل دادههای مهندسی پزشکی است.
کارشناسی ارشد دورهای کوتاه ولی پرپیچ و خمی است و در هر ترم دروس تخصصی ارائه میشود که در پایان ترم دانشجو باید یک #پروژه عملی برای درس موردنظر انجام دهد. اکثر #اساتید برای آمادهسازی دانشجویان جهت انجام پایاننامه، پروژههایی تعریف میکنند و دانشجویان باید طبق #مقالات_تخصصی پروژهها را انجام دهند.
ازطرف دیگه بسیاری از دانشجویان با دادههای مهندسی پزشکی آشنا نیستند لذا در انجام پروژه و #پیاده_سازی مقالات به مشکل میخورند.
📚دروس شناسایی آماری الگو و داده کاوی، جزء دروسی هستند که در اکثر دانشگاههای معتبر از جمله دانشگاههای تهران ارائه میشوند و در اکثر پروژههای مهندسی پزشکی از مباحث این دروس استفاده میشوند. دانشجویانی که این دروس را گذرانده باشند مطمئنا" در انجام پایاننامه خود #موفق خواهند بود.
در دوره جامع مهندسی پزشکی مباحث دو درس #پترن و #داده_کاوی به طور کامل آموزش داده میشوند و برای اینکه مطالب ملموستر شوند، الگوریتمها را روی دادههای واقعی مهندسی پزشکی اعمال میشوند. در واقع با یک #تیر دو #نشان می زنیم😃. در این دوره علاوه بر آموزش مباحث تئوری و عملی الگوریتمهای دو درس، پروژه های مختلفی آموزش داده میشود.
✅ این دوره تنها دورهای است که سعی کرده تمام مباحث مهندسی پزشکی را پوشش دهد!
⚠️ نکتهای که باید توجه شود این است که این دوره کاملا تخصصی است و مخصوص دانشجویان #ارشد و #دکتری طراحی شده است لذا برای دانشجویان کارشناسی توصیه نمیشود!
🌐 داده هایی که در این دوره استفاده می شود داده های مرتبط با مهندسی پزشکی و شرکتکنندگان علاوه بر یادگیری مباحث، با دادههای مهندسی پزشکی نیز آشنا میشوند.
◀️در این دوره ما #نحوه_کار با دادههای مختلف را آموزش میدهیم و دانشجویان دیگر #سختی کار با دادهها را تجربه نخواهند کرد😊.
💯 بطبع این دوره برای دانشجویان مهندسی پزشکی بسیار مفیدتر خواهد بود و به آنها دید بهتری از پروژه ها میدهد ولی دانشجویانی که قصد یادگیری مباحث درس پترن و داده کاوی را دارند نیز میتوانند در این دوره شرکت کنند.
🌀پروژههایی که طول دوره آموزش داده می شوند نتیجه چهار سال #تجربه گروه مهندسی پزشکی دانشجویان علم و صنعت تهران هست و سعی بر این است که پروژههای خوب و بروزی که امروزه در این رشته کار میکنند را انتخاب کنیم و براساس مقالات معتبر شبیهسازی کنیم.
✳️بعد اتمام دوره انتظار داریم دانشجویان دید بهتری از پروژهها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند، در #شبیه_سازی_مقالات تخصصی حوزه مهندسی پزشکی و در انجام #پروژه_پایاننامه مشکلی نداشته باشند.
🔺در این چند سال متوجه شدیم که اکثر دانشجویان مهندسی پزشکی مباحث را بلدند ولی در پیادهسازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند و چگونه یک پروژه را از #صفرتاصد در #متلب به طور تخصصی انجام دهند.
🌀 5 پروژه عملی از صفر تا صد در متلب پیادهسازی میشود و شرکتکنندگان با موضوعات مختلفی آشنا شده و کار با دادههای مختلف مهندسیی پزشکی را یاد میگیرند.
⏪برای اطلاع از جزئیات مباحث و پروژه هایی که در این دوره آموزش داده میشوند، فایل جزئیات دوره(PDF ) را مطالعه کنید.
➖➖➖➖➖
@IUST_Bioelecteric
onlinebme
👩💻👨💻 ۱۳ سپتامبر روز جهانی برنامه نویسان مبارک❤️❤️ ✔️ @OnlineBME
❇️🌐 بهترین زبانهای برنامه نویسی برای علوم داده، تجزیه و تحلیلهای پیشرفته و یادگیری ماشین در سال 2018
👨💻 نویسنده: محمد نوری زاده چرلو
✍ در سال 2018، زمینه علوم داده همچنان به سرعت در حال رشد است. در نتیجه تراشه های پردازش سریع و زبانهای برنامه نویسی قابل خواندن، از جمله به روز رسانی بسته، علوم داده امروزه، هم برای مشتریان و هم برای متخصصان در دسترس است.
اگر بخواهید سفر خود را در Science Data آغاز کنید، مقدار منابع موجود فراتر از هر زمانی است که شما برای تسلط بر تمام زبان های برنامه نویسی در دسترس داشته باشید. بنابراین، به دلیل تحول در بوتکمپ های اطلاعاتی از جمله #هوش_مصنوعی، #یادگیری_عمیق و برنامههای مهندسیِ داده، برای یادگیری شما در سفر علمی داده های خود، زبانهای برنامه نویسی را پشنهاد میکنم.
برخی از زبانهای برنامه نویسی برتر در سال 2018 عبارتند از:
1- #پایتون نسبت به جاوا برای اکثر دانشمندان یادگیری ماشین که روی تجزیه و تحلیل احساسات کار میکنند، در اولویت بیشتری قرار دارد.
جدا از استفاده پایتون در توسعه وب، پایتون اهمیت خود را در #داده_کاوی، محاسبات علمی و سایر حوزه ها نشان می دهد. پایتون گسترده و انعطاف پذیر است، بنابراین بسیاری از توسعه دهندگان ترجیح می دهند از پایتون به عنوان یک زبان برنامه نویسی استفاده کنند. برنامه های مدرن امروزه مانند #Instagram و #Pinterest با استفاده از زبان برنامه نویسی پایتون ساخته شده و توسعه داده میشوند. در ایالات متحده در سطوح آکادمیک، پایتون تبدیل به یک زبان برنامه نویسی محبوب شده است و به عنوان یک زبان برنامه نویسی تدریس می شود. برخی از نکات مهم عبارتند از:
پایتون یک زبان عمومی است که کمک می کند تا سیستم تولید به عملیات تبدیل شود.
پایتون برای توسعه برنامه های کاربردی بهترین است.
قدرت پایتون در دقت است.
ضعف پایتون در کمبود کد معماری است.
2- زبان برنامه نویسی R:
یک زبان برنامه نویسی مبتنی بر محاسبات آماری و گرافیکی است. میتوان مدل و نمونه ی اولیه را با R بررسی کرد.
عمدتا برای باز کردن الگوها در بلوک های بزرگ داده استفاده می شود که کار دانشمندان را آسان تر می کند. #گوگل، #فیس_بوک، #بانک_مرکزی آمریکا و #نیویورک_تایمز همه از R استفاده می کنند و همچنان استفاده های تجاری آن گسترش می یابد. نکات مهمی که باید زبان برنامه نویسی R در نظر گرفت:
برای درک و اکتشاف داده های آماری بهترین است.
قدرت آن در داشتن الگوریتمهای زبان ماشین زیاد در توابع خود است.
پکیجهای کمی دارد(ضعف).
3- جاوا: #جاوا یک زبان برنامه نویسی خوب برای یک برنامه نویس تازه کار است. به عنوان یک زبان برنامه نویسی قابل خواندن، از برنامه نویسی کاربردی پشتیبانی میکند.
4- متلب: #متلب یک زبان برنامه نویسی برای #محاسبات_عددی است که در سال 1984 توسط math’s work توسعه داده شد. متلب، حدود یک میلیون نفر کاربر دارد که از زمینه های مختلف مهندسی، مثل اقتصاد، و علوم داده هستند. متلب برای محاسبات عددی طراحی شده است و در آزمایشگاهای HPC همانند پایتون استفاده می شود. برای کسانی که برنامه نویسی را بلد هستند، یادگیری پایتون راحت خواهد بود. برنامه نویسی متلب مبتنی بر C، C ++ و زبانهای برنامه نویسی جاوا است.
5- زبان برنامه نویسی C: یکی از قدیمترین زبان برنامه نویسی در میان سایر زبانهای برنامه نویسی است. C به عنوان مادر همه زبان های در نظر گرفته شده است و یک زبان برنامه نویسی ضروری برای ساخت الگورتیم های پیش بینی شده، است. زبانهای دیگر مثل C++، جاوا، C# به نوعی فرزندان C هستند.
منبع:
https://process.filestackapi.com/cache=expiry:max/resize=width:700/compress/MMfuMl7lQAOOdFv5FxhQ
https://www.codementor.io/dyako/the-best-programming-languages-for-data-science-and-machine-learning-in-2018-nkfl0ukgs
#زبان_برنامه_نویسی
#پایتون
#جاوا
#متلب
#مهندسی_پزشکی
#هوش_مصنوعی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
✔️ @onlineBME
👨💻 نویسنده: محمد نوری زاده چرلو
✍ در سال 2018، زمینه علوم داده همچنان به سرعت در حال رشد است. در نتیجه تراشه های پردازش سریع و زبانهای برنامه نویسی قابل خواندن، از جمله به روز رسانی بسته، علوم داده امروزه، هم برای مشتریان و هم برای متخصصان در دسترس است.
اگر بخواهید سفر خود را در Science Data آغاز کنید، مقدار منابع موجود فراتر از هر زمانی است که شما برای تسلط بر تمام زبان های برنامه نویسی در دسترس داشته باشید. بنابراین، به دلیل تحول در بوتکمپ های اطلاعاتی از جمله #هوش_مصنوعی، #یادگیری_عمیق و برنامههای مهندسیِ داده، برای یادگیری شما در سفر علمی داده های خود، زبانهای برنامه نویسی را پشنهاد میکنم.
برخی از زبانهای برنامه نویسی برتر در سال 2018 عبارتند از:
1- #پایتون نسبت به جاوا برای اکثر دانشمندان یادگیری ماشین که روی تجزیه و تحلیل احساسات کار میکنند، در اولویت بیشتری قرار دارد.
جدا از استفاده پایتون در توسعه وب، پایتون اهمیت خود را در #داده_کاوی، محاسبات علمی و سایر حوزه ها نشان می دهد. پایتون گسترده و انعطاف پذیر است، بنابراین بسیاری از توسعه دهندگان ترجیح می دهند از پایتون به عنوان یک زبان برنامه نویسی استفاده کنند. برنامه های مدرن امروزه مانند #Instagram و #Pinterest با استفاده از زبان برنامه نویسی پایتون ساخته شده و توسعه داده میشوند. در ایالات متحده در سطوح آکادمیک، پایتون تبدیل به یک زبان برنامه نویسی محبوب شده است و به عنوان یک زبان برنامه نویسی تدریس می شود. برخی از نکات مهم عبارتند از:
پایتون یک زبان عمومی است که کمک می کند تا سیستم تولید به عملیات تبدیل شود.
پایتون برای توسعه برنامه های کاربردی بهترین است.
قدرت پایتون در دقت است.
ضعف پایتون در کمبود کد معماری است.
2- زبان برنامه نویسی R:
یک زبان برنامه نویسی مبتنی بر محاسبات آماری و گرافیکی است. میتوان مدل و نمونه ی اولیه را با R بررسی کرد.
عمدتا برای باز کردن الگوها در بلوک های بزرگ داده استفاده می شود که کار دانشمندان را آسان تر می کند. #گوگل، #فیس_بوک، #بانک_مرکزی آمریکا و #نیویورک_تایمز همه از R استفاده می کنند و همچنان استفاده های تجاری آن گسترش می یابد. نکات مهمی که باید زبان برنامه نویسی R در نظر گرفت:
برای درک و اکتشاف داده های آماری بهترین است.
قدرت آن در داشتن الگوریتمهای زبان ماشین زیاد در توابع خود است.
پکیجهای کمی دارد(ضعف).
3- جاوا: #جاوا یک زبان برنامه نویسی خوب برای یک برنامه نویس تازه کار است. به عنوان یک زبان برنامه نویسی قابل خواندن، از برنامه نویسی کاربردی پشتیبانی میکند.
4- متلب: #متلب یک زبان برنامه نویسی برای #محاسبات_عددی است که در سال 1984 توسط math’s work توسعه داده شد. متلب، حدود یک میلیون نفر کاربر دارد که از زمینه های مختلف مهندسی، مثل اقتصاد، و علوم داده هستند. متلب برای محاسبات عددی طراحی شده است و در آزمایشگاهای HPC همانند پایتون استفاده می شود. برای کسانی که برنامه نویسی را بلد هستند، یادگیری پایتون راحت خواهد بود. برنامه نویسی متلب مبتنی بر C، C ++ و زبانهای برنامه نویسی جاوا است.
5- زبان برنامه نویسی C: یکی از قدیمترین زبان برنامه نویسی در میان سایر زبانهای برنامه نویسی است. C به عنوان مادر همه زبان های در نظر گرفته شده است و یک زبان برنامه نویسی ضروری برای ساخت الگورتیم های پیش بینی شده، است. زبانهای دیگر مثل C++، جاوا، C# به نوعی فرزندان C هستند.
منبع:
https://process.filestackapi.com/cache=expiry:max/resize=width:700/compress/MMfuMl7lQAOOdFv5FxhQ
https://www.codementor.io/dyako/the-best-programming-languages-for-data-science-and-machine-learning-in-2018-nkfl0ukgs
#زبان_برنامه_نویسی
#پایتون
#جاوا
#متلب
#مهندسی_پزشکی
#هوش_مصنوعی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
✔️ @onlineBME
onlinebme
✅ 8 نکتهی اساسی که باید قبل از شروع یادگیری یک زبان برنامهنویسی بدانیم👌👌 نویسنده: پریسا ایلون 1- سوالات ساده بپرسید. 2- کد را بفهمید،حفظ نکنید. گوگل میتواند این کار را برای شما انجام دهد. 3- صبور باشید: کسی که آهسته و پیوسته حرکت میکند برنده است. …
✅چطور در عرض 6 ماه متخصص داده کاوی شدم؟!
✍ برای 8 سال از فضای درس و تلاش سخت دور بودم، بدون اینکه هیچ برنامهای برای زندگیام داشته باشم. ممکن است تعجب کنید چطور کسی میتواند یک زندگی این چنینی داشته باشد. در محل کار، رئیسم مرا میآزرد و من میدانستم که باید تغییری در زندگیام ایجاد کنم.
دوست پسرم پیشنهاد کرد که میتوانم یک تحلیلگر داده شوم! به او گفتم مگر دیوانه ای! من حتی پایه ترین مطالب را در مورد برنامهنویسی نمی دانم! قطعا او در مورد توانایی من اغراق می کرد!
دو هفته پس از آن، دوستم آنا، دقیقا همین پیشنهاد را به من کرد و این باعث شد من در مورد پیشنهاد آنها بیشتر فکر کنم. چرا که نه؟ تصمیم گرفتم از اول شروع کنم، خودم را از نو بسازم و یک تحلیلگر داده شوم.
تصمیم گرفتم خودم یاد بگیرم، بنابراین با دورههای آنلاین شروع کردم. بعد متوجه شدم که با موقعیت دکترا علوم اعصاب، میتوانم از یک آموزش رسمی برای کسب شغل تحلیل داده برخوردار شوم. من نیاز به مهارت عملی داشتم.
در این داستان در مورد دورههای مختلفی که گذاراندم صحبت خواهم کرد و این که چطور توانستم یک موقعیت شغلی تحلیل داده در استارتآپ سلامتی در سیلیکون والی بدست آورم.
در آن زمان، بسیاری از کلاسهای آنلاینی که دیدم رایگان بودند. بنابراین این چالش را برای خودم ایجاد کردم که هر چه را لازم دارم رایگان بیاموزم. من کمی خسیس هستم😊.
جزئیات بیشتر👇👇👇👇👇
https://onlinebme.com/4-days-ago-towards-data-science-how-i-went-from-zero-coding-skills-to-data-scientist-in-6-months/
#داده_کاوی
#برنامهنویسی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
✍ برای 8 سال از فضای درس و تلاش سخت دور بودم، بدون اینکه هیچ برنامهای برای زندگیام داشته باشم. ممکن است تعجب کنید چطور کسی میتواند یک زندگی این چنینی داشته باشد. در محل کار، رئیسم مرا میآزرد و من میدانستم که باید تغییری در زندگیام ایجاد کنم.
دوست پسرم پیشنهاد کرد که میتوانم یک تحلیلگر داده شوم! به او گفتم مگر دیوانه ای! من حتی پایه ترین مطالب را در مورد برنامهنویسی نمی دانم! قطعا او در مورد توانایی من اغراق می کرد!
دو هفته پس از آن، دوستم آنا، دقیقا همین پیشنهاد را به من کرد و این باعث شد من در مورد پیشنهاد آنها بیشتر فکر کنم. چرا که نه؟ تصمیم گرفتم از اول شروع کنم، خودم را از نو بسازم و یک تحلیلگر داده شوم.
تصمیم گرفتم خودم یاد بگیرم، بنابراین با دورههای آنلاین شروع کردم. بعد متوجه شدم که با موقعیت دکترا علوم اعصاب، میتوانم از یک آموزش رسمی برای کسب شغل تحلیل داده برخوردار شوم. من نیاز به مهارت عملی داشتم.
در این داستان در مورد دورههای مختلفی که گذاراندم صحبت خواهم کرد و این که چطور توانستم یک موقعیت شغلی تحلیل داده در استارتآپ سلامتی در سیلیکون والی بدست آورم.
در آن زمان، بسیاری از کلاسهای آنلاینی که دیدم رایگان بودند. بنابراین این چالش را برای خودم ایجاد کردم که هر چه را لازم دارم رایگان بیاموزم. من کمی خسیس هستم😊.
جزئیات بیشتر👇👇👇👇👇
https://onlinebme.com/4-days-ago-towards-data-science-how-i-went-from-zero-coding-skills-to-data-scientist-in-6-months/
#داده_کاوی
#برنامهنویسی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
چطور در عرض 6 ماه متخصص داده کاوی شدم؟! - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
برای 8 سال از فضای درس و تلاش سخت دور بودم، بدون اینکه هیچ برنامهای برای زندگیام داشته باشم. ممکن است تعجب کنید چطور کسی میتواند یک زندگی این چنینی داشته باشد. در محل کار، رئیسم مرا میآزرد و من میدانستم که باید تغییری در زندگیام ایجاد کنم.دوست پسرم…
onlinebme
یکی از مهمترین راههای پیشگیری از ابتلا به ویروس کرونا، شستن مکرر دستهاست. اما فکر میکنید دستتان را درست میشویید؟ bbcpersian @onlinebme
🦠ویروس کرونا: هوش مصنوعی، علوم داده و تکنولوژی چطور در مقابله با شیوع بیماری ما را یاری میکنند؟
نویسنده: پریسا ایلون
✍ از زمان گزارش اولین مورد ابتلا به ویروس کرونا در ووهان چین، این بیماری حداقل به صد کشور دیگر گسترش یافته است. هنگام شروع به مقابله با ویروس، چین از تکنولوژی، هوش مصنوعی و علوم داده خود برای دنبال کردن و جلوگیری از همهگیر شدن بیماری استفاده کرد، درحالی که رهبران تکنولوژی از جمله علی بابا و هوآوی فعالیتهای حوزه سلامت را در شرکتهای خود را افزایش دادند. در نتیجه، استارت آپهای تکنولوژی با کادر درمان و پژوهشگران و دولتمردان سراسر جهان دست به دست هم دادند تا همزمان با گسترس ویروس، تکنولوژی را به کار گیرند.
در اینجا 10 مورد از موارد استفاده از هوش مصنوعی، علوم داده و تکنولوژی برای مدیریت بیماری ارائه خواهد شد.
#هوش_مصنوعی
#کرونا #داده_کاوی #تکنولوژی
جزئیات بیشتر 👇
https://onlinebme.com/coronavirus-how-artificial-intelligence-data-science-and-technology-is-used-to-fight-the-pandemic/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
نویسنده: پریسا ایلون
✍ از زمان گزارش اولین مورد ابتلا به ویروس کرونا در ووهان چین، این بیماری حداقل به صد کشور دیگر گسترش یافته است. هنگام شروع به مقابله با ویروس، چین از تکنولوژی، هوش مصنوعی و علوم داده خود برای دنبال کردن و جلوگیری از همهگیر شدن بیماری استفاده کرد، درحالی که رهبران تکنولوژی از جمله علی بابا و هوآوی فعالیتهای حوزه سلامت را در شرکتهای خود را افزایش دادند. در نتیجه، استارت آپهای تکنولوژی با کادر درمان و پژوهشگران و دولتمردان سراسر جهان دست به دست هم دادند تا همزمان با گسترس ویروس، تکنولوژی را به کار گیرند.
در اینجا 10 مورد از موارد استفاده از هوش مصنوعی، علوم داده و تکنولوژی برای مدیریت بیماری ارائه خواهد شد.
#هوش_مصنوعی
#کرونا #داده_کاوی #تکنولوژی
جزئیات بیشتر 👇
https://onlinebme.com/coronavirus-how-artificial-intelligence-data-science-and-technology-is-used-to-fight-the-pandemic/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ویروس کرونا: هوش مصنوعی، علوم داده و تکنولوژی چطور در مقابله با شیوع بیماری ما را یاری میکنند - آکادمی آنلاین مهندسی پزشکی و هوش…
از زمان گزارش اولین مورد ابتلا به ویروس کرونا در ووهان چین، این بیماری حداقل به صد کشور دیگر گسترش یافته است. هنگام شروع به مقابله با ویروس، چین از تکنولوژی، هوش مصنوعی و علوم داده خود برای دنبال کردن و جلوگیری از همهگیر شدن بیماری استفاده کرد، درحالی که…