onlinebme
4.82K subscribers
1.48K photos
574 videos
345 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
🔷 یادگیری تقویتی یکی از گرایش‌های یادگیری ماشین است که از روانشناسی رفتارگرایی الهام می‌گیرد. این روش بر رفتارهایی تمرکز دارد که ماشین باید برای بیشینه کردن پاداشش انجام دهد. این مسئله، با توجه به گستردگی‌اش، در زمینه‌های گوناگونی بررسی می‌شود. مانند: نظریه بازی‌ها، نظریه کنترل، تحقیق در عملیات، نظریه اطلاعات، سامانه چندعامله، هوش ازدحامی، آمار، الگوریتم ژنتیک، بهینه‌سازی بر مبنای شبیه‌سازی. در مبحث تحقیق در عملیات و در ادبیات کنترل، حوزه‌ای که در آن روش یادگیری تقویتی مطالعه می‌شود برنامه‌نویسی تخمینی پویای (approximate dynamic programming) خوانده می‌شود.

🔺 در یادگیری ماشین با توجه به این که بسیاری از الگوریتم‌های یادگیری تقویتی از تکنیک‌های برنامه‌نویسی پویا استفاده می‌کنند معمولاً مسئله تحت عنوان یک فرایند تصمیم‌گیری مارکف مدل می‌شود. تفاوت اصلی بین روش‌های سنتی و الگوریتم‌های یادگیری تقویتی این است که در یادگیری تقویتی نیازی به داشتن اطلاعات راجع به فرایند تصمیم‌گیری ندارد و این که این روش روی فرایندهای مارکف بسیار بزرگی کار می‌کند که روش‌های سنتی در آنجا ناکارآمدند.

🔺 یادگیری تقویتی با یادگیری با نظارت معمول دو تفاوت عمده دارد، نخست اینکه در آن زوج‌های صحیح ورودی و خروجی در کار نیست و رفتارهای ناکارامد نیز از بیرون اصلاح نمی‌شوند، و دیگر آنکه تمرکز زیادی روی کارایی زنده وجود دارد که نیازمند پیدا کردن یک تعادل مناسب بین اکتشاف چیزهای جدید و بهره‌برداری از دانش اندوخته شده دارد.
منبع: ویکی پدیا

#robotic
#artificial_intelligence 
#machine_learning 
#reinforcement_learning 

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme