onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 4⃣ جلسه چهارم: پیادهسازی شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب #پرسپترون_چندلایه ، #پس_انتشار_خطا #پروژه_عملی، #…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیادهسازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب
این جلسه مهمترین جلسه دوره تخصصی پیادهسازی شبکههای عصبی در متلب است. ما در جلسه سوم الگوریتم #LMS را مطرح کرده و در نهایت شبکهعصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است.این شبکه ایرادات شبکه عصبی پرسپترون تک لایه را برطرف کرد ولی خودش یک #ایراد اساسی دارد. که این ایراد در تمام شبکههای عصبی تک لایه وجود دارد. ایراد شبکه عصبی آدالاین و یا پرسپترون تک لایه در #ساختارشان هست و به خاطر اینکه #تک_لایه هستند نمی توانند مسائل #غیرخطی مثل xor را حل کنند. برای حل این مسئله شبکه عصبی پرسپترون چندلایه مطرح شده است که با اضافه کردن #چند_لایه_پنهان توانستهاند مسائل بسیار پیچیده را به راحتی حل کنند. در این جلسه تئوری الگوریتم پس انتشار خطا کامل توضیح داده میشود و در نهایت در متلب مرحله به مرحله پیادهسازی می شود. این جلسه برای همه گروه دانشجویی و مهندسی بسیار مفید هست و میتوانند بعد از مشاهده ویدیو هم #پروژههای_تخصصی خودشان را انجام دهند و هم ایدههای خود را در الگوریتم پس انتشار خطا ارائه بکنند. برای اینکه در این جلسه به مشکل نخورید بهتر است با #مشتقگیری آشنا باشید. جلسه کاملی هست و به جرات میتوان گفت که #اولین دورهای هست که به صورت تخصصی چنین شبکهای را به صورت گام به گام در متلب پیادهسازی میکند.
بعد از اینکه شبکه عصبی در متلب پیاده شد، #عملکرد_لایههای_مختلف شبکه با #مثال_عملی توضیح داده میشود تا به صورت دقیق و عملی با ساختار و عملکرد شبکههای عصبی چندلایه آشنا شوید و متوجه شوید که شبکههای عصبی چندلایه چطور یک مسئله پیچیده را با سادهسازی مسئله در لایههای مختلف حل می کنند. این جلسه، جلسه مورد علاقه من هست و تمام سعیم را کردم که به #زبان_ساده و در عین حال تخصصی و #جامع شبکه عصبی پرسپترون چندلایه و قانون یادگیری پس انتشار خطا را توضیح دهم و امیدوارم برای شما مفید باشد.
در انتهای دوره چندین پروژه عملی از جمله #تشخیص_سرطان_سینه (پروژه عملی #طبقهبندی) و #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت #گام_به_گام در متلب پیادهسازی شد تا با انجام پروژههای عملی هم آشنا شوید و بتوانید پروژههای تخصصی خودتان را با مشاهده این ویدیو انجام دهید.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
جهت خرید جلسه چهارم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/multilayer-perceptron-with-backpropagation-algorithm/
جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
4⃣ جلسه چهارم: پیادهسازی شبکه عصبی #پرسپترون_چندلایه با قانون یادگیری #پس_انتشار_خطا در متلب
این جلسه مهمترین جلسه دوره تخصصی پیادهسازی شبکههای عصبی در متلب است. ما در جلسه سوم الگوریتم #LMS را مطرح کرده و در نهایت شبکهعصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است.این شبکه ایرادات شبکه عصبی پرسپترون تک لایه را برطرف کرد ولی خودش یک #ایراد اساسی دارد. که این ایراد در تمام شبکههای عصبی تک لایه وجود دارد. ایراد شبکه عصبی آدالاین و یا پرسپترون تک لایه در #ساختارشان هست و به خاطر اینکه #تک_لایه هستند نمی توانند مسائل #غیرخطی مثل xor را حل کنند. برای حل این مسئله شبکه عصبی پرسپترون چندلایه مطرح شده است که با اضافه کردن #چند_لایه_پنهان توانستهاند مسائل بسیار پیچیده را به راحتی حل کنند. در این جلسه تئوری الگوریتم پس انتشار خطا کامل توضیح داده میشود و در نهایت در متلب مرحله به مرحله پیادهسازی می شود. این جلسه برای همه گروه دانشجویی و مهندسی بسیار مفید هست و میتوانند بعد از مشاهده ویدیو هم #پروژههای_تخصصی خودشان را انجام دهند و هم ایدههای خود را در الگوریتم پس انتشار خطا ارائه بکنند. برای اینکه در این جلسه به مشکل نخورید بهتر است با #مشتقگیری آشنا باشید. جلسه کاملی هست و به جرات میتوان گفت که #اولین دورهای هست که به صورت تخصصی چنین شبکهای را به صورت گام به گام در متلب پیادهسازی میکند.
بعد از اینکه شبکه عصبی در متلب پیاده شد، #عملکرد_لایههای_مختلف شبکه با #مثال_عملی توضیح داده میشود تا به صورت دقیق و عملی با ساختار و عملکرد شبکههای عصبی چندلایه آشنا شوید و متوجه شوید که شبکههای عصبی چندلایه چطور یک مسئله پیچیده را با سادهسازی مسئله در لایههای مختلف حل می کنند. این جلسه، جلسه مورد علاقه من هست و تمام سعیم را کردم که به #زبان_ساده و در عین حال تخصصی و #جامع شبکه عصبی پرسپترون چندلایه و قانون یادگیری پس انتشار خطا را توضیح دهم و امیدوارم برای شما مفید باشد.
در انتهای دوره چندین پروژه عملی از جمله #تشخیص_سرطان_سینه (پروژه عملی #طبقهبندی) و #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه به صورت #گام_به_گام در متلب پیادهسازی شد تا با انجام پروژههای عملی هم آشنا شوید و بتوانید پروژههای تخصصی خودتان را با مشاهده این ویدیو انجام دهید.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
جهت خرید جلسه چهارم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/multilayer-perceptron-with-backpropagation-algorithm/
جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پرسپترون چندلایه (جلسه چهارم) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ین جلسه مهمترین جلسه دوره تخصصی پیادهسازی شبکههای عصبی در متلب است. ما در جلسه سوم الگوریتم LMS را مطرح کرده و در نهایت شبکهعصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است.این شبکه ایرادات شبکه عصبی پرسپترون تک لایه…
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم) #نرخ_یادگیری #دلتا_دلتا #…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
✍ همانطور که در جلسه پنجم توضیح دادیم در پروژههای عملی تعیین نرخ یادگیری برای الگوریتم #گرادیان_نزولی بسیار سخت و چالش برانگیز است، زیرا که اگر نرخ یادگیری کم انتخاب شود، الگوریتم ممکن است در #مینیممهای_محلی گیر کند و در نتیجه شبکه به درستی آموزش نبیند و یا اگر نرخ یادگیری بزرگ انتخاب شود امکان دارد شبکه به حالت #نوسانی و #ناپایدار برسد و در نتیجه همگرا نشده و آموزش نبیند. برای حل این مشکل چند روش ساده از قبیل #ترم_ممنتوم، search then converge و time variant در متلب پیادهسازی کردیم و مزایا و معایب هر روش را توضیح دادیم و در انتها توضیح دادیم که روشهای ذکر شده با اینکه تا حدودی توانستهاند مشکل تعیین نرخ یادگیری را حل کنند ولی کافی نیستند و نیاز است که شرطهای دیگری نیز در تعیین نرخ یادگیری گنجانده شود.
در این جلسه شروط مورد نیاز جهت تعیین نرخ یادگیری بهینه را توضیح میدهیم و سپس تئوری الگوریتم یادگیری دلتا دلتا را توضیح داده و در نهایت در متلب به صورت #گام_به_گام پیادهسازی میکنیم. و ایرادات اساسی این الگوریتم را توضیح میدهیم تا آماده شویم برای جلسه هفتم که الگورتیم دلتا بار دلتا را در آن آموزش میدهیم. الگورتیم دلتا بار دلتا #گل_سرسبد الگورتیمهای یادگیری پس انتشار خطا هست که به صورت بهینه نرخ یادگیری را تعیین میکند و مشکل اساسی الگوریتم پس انتشار خطا را حل میکند. برای اینکه جلسه هفتم را بهتر متوجه بشوید لازم است که این جلسه را مشاهده کنید.
نکته: تمام مباحثاین جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه ششم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/delta-delta-algorithm/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
6⃣ جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
✍ همانطور که در جلسه پنجم توضیح دادیم در پروژههای عملی تعیین نرخ یادگیری برای الگوریتم #گرادیان_نزولی بسیار سخت و چالش برانگیز است، زیرا که اگر نرخ یادگیری کم انتخاب شود، الگوریتم ممکن است در #مینیممهای_محلی گیر کند و در نتیجه شبکه به درستی آموزش نبیند و یا اگر نرخ یادگیری بزرگ انتخاب شود امکان دارد شبکه به حالت #نوسانی و #ناپایدار برسد و در نتیجه همگرا نشده و آموزش نبیند. برای حل این مشکل چند روش ساده از قبیل #ترم_ممنتوم، search then converge و time variant در متلب پیادهسازی کردیم و مزایا و معایب هر روش را توضیح دادیم و در انتها توضیح دادیم که روشهای ذکر شده با اینکه تا حدودی توانستهاند مشکل تعیین نرخ یادگیری را حل کنند ولی کافی نیستند و نیاز است که شرطهای دیگری نیز در تعیین نرخ یادگیری گنجانده شود.
در این جلسه شروط مورد نیاز جهت تعیین نرخ یادگیری بهینه را توضیح میدهیم و سپس تئوری الگوریتم یادگیری دلتا دلتا را توضیح داده و در نهایت در متلب به صورت #گام_به_گام پیادهسازی میکنیم. و ایرادات اساسی این الگوریتم را توضیح میدهیم تا آماده شویم برای جلسه هفتم که الگورتیم دلتا بار دلتا را در آن آموزش میدهیم. الگورتیم دلتا بار دلتا #گل_سرسبد الگورتیمهای یادگیری پس انتشار خطا هست که به صورت بهینه نرخ یادگیری را تعیین میکند و مشکل اساسی الگوریتم پس انتشار خطا را حل میکند. برای اینکه جلسه هفتم را بهتر متوجه بشوید لازم است که این جلسه را مشاهده کنید.
نکته: تمام مباحثاین جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه ششم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/delta-delta-algorithm/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
MLP با قانون یادگیری دلتا دلتا (جلسه ششم) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
همانطور که در جلسه پنجم توضیح دادیم در پروژههای عملی تعیین نرخ یادگیری برای الگوریتم گرادیان نزولی بسیار سخت و چالش برانگیز است، زیرا که اگر نرخ یادگیری کم انتخاب شود، الگوریتم ممکن است در مینیممهای محلی گیر کند و در نتیجه شبکه به درستی آموزش نبیند و یا…
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران 7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم) #نرخ_یادگیری #دلتا_بار_دلتا…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
✍ در جلسه ششم شروط مورد نیاز جهت تعیین #نرخ_یادگیری بهینه را توضیح داده و سپس تئوری الگوریتم یادگیری #دلتا_دلتا را در متلب به صورت #گام_به_گام پیادهسازی کردیم. و ایرادات اساسی این الگوریتم را توضیح دادیم. در این الگوریتم با اینکه 4 شرط اساسی برای تعیین نرخ یادگیری گنجانده شده بود ولی مشکل اصلی این الگوریتم در نحوه #افزایش و #کاهش نرخ یادگیری است. برای اینکه نرخ یادگیری بهینه ای داشته باشیم لازم است که در جاهایی که #شیب_خطا در چند تکرار متوالی یکسان است نرخ یادگیری به صورت خطی و آهسته زیاد کنیم و از طرفی زمانی که علامت مشتق تابع هزینه در چندین تکرار متوالی متفاوت است لازم است که نرخ یادگیری سریع و به صورت #غیرخطی کم شود تا حالت نوسانی و ناپایدار پیش نیاید. الگوریتم دلتا دلتا همچنین قابلیتی ندارد و در نتیجه نرخ یادگیری بهینه که اساس یادگیری پس انتشار خطا است، را نمیتواند تعیین کند. الگوریتم دلتا بار دلتا برای حل این مسئله مطرح شده است که در این جلسه تئوری آن گفته شده و در متلب پیادهسازی می کنیم و در انتها برای اینکه با قابلیت این الگوریتم آشنا شوید و همچنین بتوانید از این الگوریتم در پروژههای عملی خودتان استفاده کنید چندین پروژه عملی از قبیل از جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه انجام شده است و همچنین یک پروژه کلاسبندی #سه_کلاسه iris (#گل_زنبق) انجام شده است تا شما در انجام پروژه های چندکلاسه نیز مشکلی نداشته باشید. داده iris یک داده سه کلاسه معروفی است که آقای #فیشر(Fisher) معرفی کرده اند و یک داده مناسب برای #ارزیابی مدلهای #یادگیری_ماشین است. ما در این جلسه هر سه پروژه را به صورت مرحله به مرحله در متلب پیاده سازی میکنیم.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
7⃣ جلسه هفتم: پیادهسازی الگوریتم یادگیری دلتا بار دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
✍ در جلسه ششم شروط مورد نیاز جهت تعیین #نرخ_یادگیری بهینه را توضیح داده و سپس تئوری الگوریتم یادگیری #دلتا_دلتا را در متلب به صورت #گام_به_گام پیادهسازی کردیم. و ایرادات اساسی این الگوریتم را توضیح دادیم. در این الگوریتم با اینکه 4 شرط اساسی برای تعیین نرخ یادگیری گنجانده شده بود ولی مشکل اصلی این الگوریتم در نحوه #افزایش و #کاهش نرخ یادگیری است. برای اینکه نرخ یادگیری بهینه ای داشته باشیم لازم است که در جاهایی که #شیب_خطا در چند تکرار متوالی یکسان است نرخ یادگیری به صورت خطی و آهسته زیاد کنیم و از طرفی زمانی که علامت مشتق تابع هزینه در چندین تکرار متوالی متفاوت است لازم است که نرخ یادگیری سریع و به صورت #غیرخطی کم شود تا حالت نوسانی و ناپایدار پیش نیاید. الگوریتم دلتا دلتا همچنین قابلیتی ندارد و در نتیجه نرخ یادگیری بهینه که اساس یادگیری پس انتشار خطا است، را نمیتواند تعیین کند. الگوریتم دلتا بار دلتا برای حل این مسئله مطرح شده است که در این جلسه تئوری آن گفته شده و در متلب پیادهسازی می کنیم و در انتها برای اینکه با قابلیت این الگوریتم آشنا شوید و همچنین بتوانید از این الگوریتم در پروژههای عملی خودتان استفاده کنید چندین پروژه عملی از قبیل از جلمه #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی #رگرسیون) با استفاده از شبکه عصبی پرسپترون چندلایه انجام شده است و همچنین یک پروژه کلاسبندی #سه_کلاسه iris (#گل_زنبق) انجام شده است تا شما در انجام پروژه های چندکلاسه نیز مشکلی نداشته باشید. داده iris یک داده سه کلاسه معروفی است که آقای #فیشر(Fisher) معرفی کرده اند و یک داده مناسب برای #ارزیابی مدلهای #یادگیری_ماشین است. ما در این جلسه هر سه پروژه را به صورت مرحله به مرحله در متلب پیاده سازی میکنیم.
نکته: تمام مباحث این جلسه طبق مطالب فصل 6 کتاب Simon haykin است.
➖➖➖➖➖➖➖➖➖➖➖
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پکیج کامل پیادهسازی گام به گام شبکههای عصبی - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
درس شبکه عصبی پایهی اصلی مباحث یادگیری ماشین و هوش مصنوعی است و هر دانشجوی مهندسی لازم است که در ابتدا با گذراندن این دوره وارد حوزه هوش مصنوعی و یادگیری ماشین شود. دوره های زیادی در کشور برگزار می شود ولی بیشتر این دوره ها تخصصی نیستند و یک سری ایراداتی…
onlinebme
❌💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢❌ مدرس : محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران مدت زمان ویدیوها: 19 ساعت ✅ اولین دوره تخصصی در ایران که در آن تمام اصول مورد نیاز برای پردازش سیگنال…
❌💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢❌
مدرس : محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
مدت زمان ویدیوها: 19 ساعت
✍ واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی میکند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنالهای حیاتی اندازهگیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبههای انتزاعی حالت شناختی فرد را پیش بینی میکند. در دوره تخصصی پردازش سیگنال EEG بطور کامل در مورد سیستم BCI توضیح داده شده است.
🔵 واسط مغز و کامپیوتر مبتنی بر تصور حرکتی(motor imagery)، حالتی که شخص تصور میکند را از روی سیگنالهای مغزی( EEG) فرد، تشخیص داده و به دستور تبدیل میکند. هدف فناوری BCI این است که یک #راه_ارتباطی جدید برای افراد معلول (فلج) ایجاد کند به طوری که افراد هیچ وابستگیای به کنترل عضلات نداشته باشند. سیگنال EEG یکی از ورودیهایی هست که BCI از طریق این سیگنال ارتباط بین شخص و محیط بیرونی را فراهم میکند. در BCI مبتنی بر تصور حرکتی از شخص خواسته میشود تا حرکتی را بدون اینکه انجام دهد تصور کند، که در نتیجه آن رخدادهایی مرتبط با تصور در مغز رخ میدهد. هدف #BCI این است که از روی سیگنالهای EEG نوع حرکت تصور شده توسط شخص را تشخیص دهد. تشخیص نوع تصوری که فرد انجام داده از روی سیگنال #EEG که روزلوشن مکانی مناسبی ندارد کار بسیار سختی است و به الگوریتمهای پیشرفته ای نیاز است.
🔹ما در این دوره تخصصی تمام مباحثی که برای پردازش دادههای #EEG مبتنی بر تسک تصوری حرکتی هست را آموزش میدهیم و برای اینکه با عملکرد عملی این الگوریتم ها آشنا شوید، چندین #پروژه_عملی طبق چند #مقاله_تخصصی روی داده های واقعی سایت #BCI_competition انجام میدهیم.
🗂از سه مجموع داده EEG مبتنی بر تسک تصور حرکتی در این دوره استفاده شده است. در ابتدا #پروسه_ثبت و اطلاعات مربوط به این دادهها را کامل توضیح میدهیم، باندهای #فرکانسی که مرتبط با تصور حرکتی و #مناطق مغزی مرتبط با تصور حرکتی را توضیح میهیم. سپس شروع به تحلیل دادهها میکنیم. در ادامه انواع فیلترهای #مکانی و #فرکانسی جهت #کاهش_نویز سیگنال و #source_localization را توضیح داده و به صورت #گام_به_گام در متلب پیاده سازی کرده و روی داده اعمال میکنیم، در ادامه روشهای استخراج ویژگی و کلاسبندی داده تصوری حرکتی را توضیح داده و روی داده پیادهسازی میکنیم.
✅ در این دوره تئوری الگوریتم معروف #CSP ، الگوهای مکانی مشترک (Common Special Patterns)
را به زبان ساده توضیح داده و سپس #گام_به_گام در متلب پیادهسازی کرده و بر روی داده اعمال میکنیم.
✅در نهایت معایب و مزایای CSP را بررسی میکنیم و برای حل مشکل این الگورتیم معروف، الگورتیم بهبود یافته شده CSP یعنی
#FBCSP -filter bank CSP
را پیادهسازی میکنیم.
در این دوره برای کلاسبندی دادهها از سه کلاسبند معروف بنام
SVM-support vector machine knn-k nearest neighbors
lda-linear discriminant analysis
استفاده کردهایم.
🔹برای ارزیابی و اعتبارسنجی مدلهای طراحی شده از چهار روش معروف
k-fold cross validation
the hold out method
random subsampling
leave one out
استفاده کرده ایم.
✅ در پایان این دوره، شرکتکننده دیگر هیچ مشکلی در انجام #پروژههای_عملی و پردازش سیگنالهای EEG مبتنی بر تصوری حرکتی و #پیادهسازی_مقالات تخصصی جهت بهبود عملکرد کلاسبندی نخواهد داشت.
🔴4 تا مقاله تخصصی در این دوره پیاده سازی شده است که میتوانید برای #پروژه_های_درسی یا #پایان_نامه خود استفاده کنید.
🔵پروژه های عملی بر روی سه داده معروف bci competition انجام شده اند👌
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس : محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
مدت زمان ویدیوها: 19 ساعت
✍ واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی میکند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنالهای حیاتی اندازهگیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبههای انتزاعی حالت شناختی فرد را پیش بینی میکند. در دوره تخصصی پردازش سیگنال EEG بطور کامل در مورد سیستم BCI توضیح داده شده است.
🔵 واسط مغز و کامپیوتر مبتنی بر تصور حرکتی(motor imagery)، حالتی که شخص تصور میکند را از روی سیگنالهای مغزی( EEG) فرد، تشخیص داده و به دستور تبدیل میکند. هدف فناوری BCI این است که یک #راه_ارتباطی جدید برای افراد معلول (فلج) ایجاد کند به طوری که افراد هیچ وابستگیای به کنترل عضلات نداشته باشند. سیگنال EEG یکی از ورودیهایی هست که BCI از طریق این سیگنال ارتباط بین شخص و محیط بیرونی را فراهم میکند. در BCI مبتنی بر تصور حرکتی از شخص خواسته میشود تا حرکتی را بدون اینکه انجام دهد تصور کند، که در نتیجه آن رخدادهایی مرتبط با تصور در مغز رخ میدهد. هدف #BCI این است که از روی سیگنالهای EEG نوع حرکت تصور شده توسط شخص را تشخیص دهد. تشخیص نوع تصوری که فرد انجام داده از روی سیگنال #EEG که روزلوشن مکانی مناسبی ندارد کار بسیار سختی است و به الگوریتمهای پیشرفته ای نیاز است.
🔹ما در این دوره تخصصی تمام مباحثی که برای پردازش دادههای #EEG مبتنی بر تسک تصوری حرکتی هست را آموزش میدهیم و برای اینکه با عملکرد عملی این الگوریتم ها آشنا شوید، چندین #پروژه_عملی طبق چند #مقاله_تخصصی روی داده های واقعی سایت #BCI_competition انجام میدهیم.
🗂از سه مجموع داده EEG مبتنی بر تسک تصور حرکتی در این دوره استفاده شده است. در ابتدا #پروسه_ثبت و اطلاعات مربوط به این دادهها را کامل توضیح میدهیم، باندهای #فرکانسی که مرتبط با تصور حرکتی و #مناطق مغزی مرتبط با تصور حرکتی را توضیح میهیم. سپس شروع به تحلیل دادهها میکنیم. در ادامه انواع فیلترهای #مکانی و #فرکانسی جهت #کاهش_نویز سیگنال و #source_localization را توضیح داده و به صورت #گام_به_گام در متلب پیاده سازی کرده و روی داده اعمال میکنیم، در ادامه روشهای استخراج ویژگی و کلاسبندی داده تصوری حرکتی را توضیح داده و روی داده پیادهسازی میکنیم.
✅ در این دوره تئوری الگوریتم معروف #CSP ، الگوهای مکانی مشترک (Common Special Patterns)
را به زبان ساده توضیح داده و سپس #گام_به_گام در متلب پیادهسازی کرده و بر روی داده اعمال میکنیم.
✅در نهایت معایب و مزایای CSP را بررسی میکنیم و برای حل مشکل این الگورتیم معروف، الگورتیم بهبود یافته شده CSP یعنی
#FBCSP -filter bank CSP
را پیادهسازی میکنیم.
در این دوره برای کلاسبندی دادهها از سه کلاسبند معروف بنام
SVM-support vector machine knn-k nearest neighbors
lda-linear discriminant analysis
استفاده کردهایم.
🔹برای ارزیابی و اعتبارسنجی مدلهای طراحی شده از چهار روش معروف
k-fold cross validation
the hold out method
random subsampling
leave one out
استفاده کرده ایم.
✅ در پایان این دوره، شرکتکننده دیگر هیچ مشکلی در انجام #پروژههای_عملی و پردازش سیگنالهای EEG مبتنی بر تصوری حرکتی و #پیادهسازی_مقالات تخصصی جهت بهبود عملکرد کلاسبندی نخواهد داشت.
🔴4 تا مقاله تخصصی در این دوره پیاده سازی شده است که میتوانید برای #پروژه_های_درسی یا #پایان_نامه خود استفاده کنید.
🔵پروژه های عملی بر روی سه داده معروف bci competition انجام شده اند👌
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی میکند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنالهای حیاتی اندازهگیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبههای انتزاعی…
💡 اول ترم را با یادگیری شبکههای عصبی شروع کنیم 😊
📺 دوره #تخصصی پیاده سازی گام به گام شبکههای عصبی در متلب
🔴 #اولین دوره ای که در آن شبکه های عصبی به صورت #گام_به_گام پیاده سازی شده و روی پروژه های عملی اعمال میشوند👌
🔺#تئوری
🔺 #پیادهسازی #گام_به_گام
🔺انجام #پروژههای_عملی
✅ ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتر و راحتری با آن برقرارکنه😉
👨💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
🔹 جلسه اول: مقدمهای بر شبکهی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633
🔸 جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637
🔹 جلسه سوم: قانون یادگیری #LMS و پیادهسازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638
🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645
🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651
🔹جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661
🔸 جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664
🔹 جلسه هشتم: پیادهسازی شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679
🔸 جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687
🔹 جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694
✅ جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
#پروژه_محور
از #پروژه های انجام شده و #مقالات پیاده سازی شده در این دوره میتوانید در پروژه های درسی و #پایان_نامه خود استفاده کنید👌
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
📺 دوره #تخصصی پیاده سازی گام به گام شبکههای عصبی در متلب
🔴 #اولین دوره ای که در آن شبکه های عصبی به صورت #گام_به_گام پیاده سازی شده و روی پروژه های عملی اعمال میشوند👌
🔺#تئوری
🔺 #پیادهسازی #گام_به_گام
🔺انجام #پروژههای_عملی
✅ ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتر و راحتری با آن برقرارکنه😉
👨💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
🔹 جلسه اول: مقدمهای بر شبکهی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633
🔸 جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637
🔹 جلسه سوم: قانون یادگیری #LMS و پیادهسازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638
🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645
🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651
🔹جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661
🔸 جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664
🔹 جلسه هشتم: پیادهسازی شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679
🔸 جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687
🔹 جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694
✅ جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
#پروژه_محور
از #پروژه های انجام شده و #مقالات پیاده سازی شده در این دوره میتوانید در پروژه های درسی و #پایان_نامه خود استفاده کنید👌
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Telegram
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
#پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
#پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…