onlinebme
💡 شروع ثبت نام دوره عملی پیاده سازی شبکه های عصبی در متلب( #تهران و #تبریز) ✅ جهت ثبت نام با شماره ی زیر تماس بگیرید: 0936-038-2687 @Bio_engineerr ➖➖ @IUST_Bioelecteric
💡✅ توضیحات تکمیلی دوره شبکه عصبی:
✍️ امروزه در ایران دوره های مختلفی برای درس شبکه عصبی برگزار میشود و البته هر کدام مزایای خودشون رو دارند و با اهدافی دوره ها رو برگزار میکنند.
گروه تخصصی و آموزشی مدرسین علم و صنعت تهران هم سعی براین دارد که در این مسیر فعالیت کند، اما به صورت #متفاوت!
سعی ما بر این است که یک دوره صرفا عملی و یا صرفا تئوری برگزار نکینم. ما در این دوره علاوه برمباحث تئوری، همزمان مباحث عملی رو به صورت گام به گام آموزش میدهیم.
🔺 اولین #وجه_تمایز دوره شبکه عصبی ما با سایر دوره ها این است که در این دوره نحوه استفاده از #توابع_آماده_متلب آموزش داده نمیشود بلکه نحوهی #پیاده_سازی شبکه ها بطور کامل آموزش داده می شود و مطمئنا شرکتکنندگان بعد از #تمرین و تکرار مطالبی که آموزش داده میشود، در پیادهسازی شبکهها، #بهبود شبکهها، شبیهسازی #مقالات و استفاده از شبکهها در #پروژههای_عملی دچار مشکل نخواهند شد.
🔺 دوره به صورت #آکادمیک هست و سعی بر این است که تمام مباحث #کتاب معروف Siomon Haykin آموزش داده شود. کتاب Siomon Haykin، کتابی #استاندارد برای یادگیری شبکههای عصبی است که در بیشتر دانشگاههای داخل و خارج کشور تدریس میشود. در ابتدای هر جلسه، مباحث تئوری کتاب آموزش داده میشود و سپس به طور گام به گام در متلب پیادهسازی میشود.
از آنجا شرکت کنندگان علاوه بر یادگیری مباحث عملی، مباحث تئوری را نیز یاد میگیرند لذا شرکتکنندگان بعد از اتمام دوره، میتوانند #نمره_کاملی در درس شبکه عصبی (در هر مقطعی) بگیرند که این یکی از مزیتهای دیگر دوره شبکه عصبی ما است.
از آنجا که دوره ما #پروژه محور است، سعی شده مسائل و پروژه های مختلفی با استفاده از شبکه عصبی انجام شود تا شرکت کنندگان بعد از اتمام دوره بتوانند پروژه های خود را با شبکه های عصبی انجام دهند.
✅💡پروژه هایی که در این دوره با استفاده از شبکه های عصبی انجام داده میشوند:
💡تشخیص #سرطان_سینه با استفاده از شبکه های عصبی
💡تشخیص بیماری #صرع از روی سیگنالهای مغزی با استفاده از شبکه های عصبی
💡تخمین کیفیت #شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
💡پیش بینی #نرخ_ارز با استفاده از شبکه های عصبی
💡کلاسبندی داده های دوکلاسه و #چندکلاسه، مثل داده سه کلاسه #iris (داده ی معروف در سایت uci)
💡حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 تخمین کیفیت شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
تمامی شبکه ها از #صفرتاصد آموزش داده میشوند، در ابتدا، مباحث تئوری آموزش داده میشود و سپس به صورت گام به گام در متلب پیادهسازی می شوند و بعد از پیاده سازی در پروژه های عملی استفاده می شوند.
#مزایا و #معایب هر شبکه به صورت #واقعی در پروژههای عملی نشان داده میشود و هنرجو از این طریق #درک بهتری نسبت به شبکهها پیدا میکند.
🔺علاوه بر مباحث کتاب Siomon Haykin ، دو شبکه عصبی معروفPNN و ELMرا طبق مقالات معتبر پیادهسازی می¬کنیم که از این طریق شرکتکنندگان با پیادهسازی مقالات نیز آشنا میشوند.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
💡 برنامهنویسی در محیط متلب
💡پیادهسازی تمامی شبکههای عصبی در متلب
💡 حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 استفاده از شبکههای عصبی در پروژههای کلاسبندی و رگرسیون
💡 انجام پروژههای عملی با استفاده از شبکههای عصبی
💡 کاهش بعد و استخراج ویژگی با استفاده از شبکههای عصبی
💡 حل مسائل کلاسبندی با استفاده از شبکههای عصبی
💡 حل مسائل پیشبینی با استفاده از شبکههای عصبی
💡 خوشهبندی دادهها با استفاده از شبکههای عصبی
✅ 💡بعد از اتمام دوره دانشجویانی که طول دوره فعال بودند و نمره قابل قبولی دریافت کردند، انتخاب می شوند تا در کارهای عملی و پروژههای پژوهشی جهت نوشتن مقالات همکاری شود.
https://telegram.me/joinchat/BcXDaEEL4FjSZ9Uxrki-9Q
➖➖➖➖➖
@IUST_Bioelecteric
✍️ امروزه در ایران دوره های مختلفی برای درس شبکه عصبی برگزار میشود و البته هر کدام مزایای خودشون رو دارند و با اهدافی دوره ها رو برگزار میکنند.
گروه تخصصی و آموزشی مدرسین علم و صنعت تهران هم سعی براین دارد که در این مسیر فعالیت کند، اما به صورت #متفاوت!
سعی ما بر این است که یک دوره صرفا عملی و یا صرفا تئوری برگزار نکینم. ما در این دوره علاوه برمباحث تئوری، همزمان مباحث عملی رو به صورت گام به گام آموزش میدهیم.
🔺 اولین #وجه_تمایز دوره شبکه عصبی ما با سایر دوره ها این است که در این دوره نحوه استفاده از #توابع_آماده_متلب آموزش داده نمیشود بلکه نحوهی #پیاده_سازی شبکه ها بطور کامل آموزش داده می شود و مطمئنا شرکتکنندگان بعد از #تمرین و تکرار مطالبی که آموزش داده میشود، در پیادهسازی شبکهها، #بهبود شبکهها، شبیهسازی #مقالات و استفاده از شبکهها در #پروژههای_عملی دچار مشکل نخواهند شد.
🔺 دوره به صورت #آکادمیک هست و سعی بر این است که تمام مباحث #کتاب معروف Siomon Haykin آموزش داده شود. کتاب Siomon Haykin، کتابی #استاندارد برای یادگیری شبکههای عصبی است که در بیشتر دانشگاههای داخل و خارج کشور تدریس میشود. در ابتدای هر جلسه، مباحث تئوری کتاب آموزش داده میشود و سپس به طور گام به گام در متلب پیادهسازی میشود.
از آنجا شرکت کنندگان علاوه بر یادگیری مباحث عملی، مباحث تئوری را نیز یاد میگیرند لذا شرکتکنندگان بعد از اتمام دوره، میتوانند #نمره_کاملی در درس شبکه عصبی (در هر مقطعی) بگیرند که این یکی از مزیتهای دیگر دوره شبکه عصبی ما است.
از آنجا که دوره ما #پروژه محور است، سعی شده مسائل و پروژه های مختلفی با استفاده از شبکه عصبی انجام شود تا شرکت کنندگان بعد از اتمام دوره بتوانند پروژه های خود را با شبکه های عصبی انجام دهند.
✅💡پروژه هایی که در این دوره با استفاده از شبکه های عصبی انجام داده میشوند:
💡تشخیص #سرطان_سینه با استفاده از شبکه های عصبی
💡تشخیص بیماری #صرع از روی سیگنالهای مغزی با استفاده از شبکه های عصبی
💡تخمین کیفیت #شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
💡پیش بینی #نرخ_ارز با استفاده از شبکه های عصبی
💡کلاسبندی داده های دوکلاسه و #چندکلاسه، مثل داده سه کلاسه #iris (داده ی معروف در سایت uci)
💡حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 تخمین کیفیت شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
تمامی شبکه ها از #صفرتاصد آموزش داده میشوند، در ابتدا، مباحث تئوری آموزش داده میشود و سپس به صورت گام به گام در متلب پیادهسازی می شوند و بعد از پیاده سازی در پروژه های عملی استفاده می شوند.
#مزایا و #معایب هر شبکه به صورت #واقعی در پروژههای عملی نشان داده میشود و هنرجو از این طریق #درک بهتری نسبت به شبکهها پیدا میکند.
🔺علاوه بر مباحث کتاب Siomon Haykin ، دو شبکه عصبی معروفPNN و ELMرا طبق مقالات معتبر پیادهسازی می¬کنیم که از این طریق شرکتکنندگان با پیادهسازی مقالات نیز آشنا میشوند.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
💡 برنامهنویسی در محیط متلب
💡پیادهسازی تمامی شبکههای عصبی در متلب
💡 حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 استفاده از شبکههای عصبی در پروژههای کلاسبندی و رگرسیون
💡 انجام پروژههای عملی با استفاده از شبکههای عصبی
💡 کاهش بعد و استخراج ویژگی با استفاده از شبکههای عصبی
💡 حل مسائل کلاسبندی با استفاده از شبکههای عصبی
💡 حل مسائل پیشبینی با استفاده از شبکههای عصبی
💡 خوشهبندی دادهها با استفاده از شبکههای عصبی
✅ 💡بعد از اتمام دوره دانشجویانی که طول دوره فعال بودند و نمره قابل قبولی دریافت کردند، انتخاب می شوند تا در کارهای عملی و پروژههای پژوهشی جهت نوشتن مقالات همکاری شود.
https://telegram.me/joinchat/BcXDaEEL4FjSZ9Uxrki-9Q
➖➖➖➖➖
@IUST_Bioelecteric
Telegram
onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائهدهندهی پکیجهای آموزشی پروژه محور:
برنامهنویسی متلب-پایتون
پردازش تصویر&سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکههای عصبی
واسط مغز-کامپیوتر
تماس👇
09360382687
@onlineBME_admin
سایت
www.onlinebme.com
ارائهدهندهی پکیجهای آموزشی پروژه محور:
برنامهنویسی متلب-پایتون
پردازش تصویر&سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکههای عصبی
واسط مغز-کامپیوتر
تماس👇
09360382687
@onlineBME_admin
سایت
www.onlinebme.com
✅ آموزش الگوریتم هوش مصنوعی جهت حذف نویز و آرتیفکت در تصویر توسط محققان NVIDAI!
👨💻نویسنده: محمد نوری زاده چرلو
✍ چه اتفاقی میافته اگه شما به یک تکنولوژی هوش مصنوعی دست یابید که بتونه تمام نویزها و آرتیفکتهای تصویر را حذف کند؟! 🧐
حتی نویزهایی که در تصاویر با شدت روشنایی پایین هستند؟ عالیه نه؟😃
خب حالا اگه اون الگوریتمه متن و واترمارکها رو هم بتونه از تصویر حذف کنه چی؟! دیگه خیلی عالیه نه؟!😇
🔺گفته میشه که هر تکنولوژی هم میتونه استفاده #خوب ازش بشه و هم #بد، ولی این هیچ وقت نباید #نوآوریهارو متوقف کنه.
🔺 در آخرین تحقیقات #پردازش_تصویر ، NVIDIA در گزارشی گفته است که تیمشون تونستن یک AIی را آموزش دهند که می تونه از طریق یک رویکرد #یادگیری_عمیق، #نویز عکس های دانه دار (grainy image) رو حذف کنه. این گروه برای انجام این پروژه با دانشگاه آالو و MIT همکاری کرده است.
🔹معمولا مدل #هوش_مصنوعی نیاز داره که به تصویر بدون نویز و تصویر نویزی نگاه کنه و #تفاوت بین دو تصویر رو بفهمه و از این طریق یاد بگیره که نویز تصاویر نویزی رو حذف و یا کم کنه. (چیزی که ما تو دوره شبکه عصبی و پردازش تصویر با بچه ها کار میکنیم)
اما نکته قابل توجه اینه که این مدل هوش مصنوعی ارائه شده تنها به نمونه های مشابه تصاویر نویزی نگاه میکنه و نویز تصویر را حذف میکنه!!🤔🙄
هیچ تصویر بدون نویز (تر و تمیز) به مدل AI نشون داده نشده و ولی با این حال الگورتیم تونسته به صورت خودکار یاد بگیره که چطوری تصاویر رو بهبود بده و نویزشون رو از بین ببره!
🔹 محققان بیان کرده اند که: این امکان پذیره که یاد بگیریم سیگنالهای نویزی رو بدون مشاهده تصاویر بدون نویز بازسازی کنیم، اونم با عملکرد نزدیک و یا برابر با مدلهایی که با نگاه کردن به تصاویر بدون نویز، نویز تصویر رو کم می کنند!
"تیم GPU های NVIDIA Tesla P100 با چارچوب یادگیری عمیق TensorFlow cuDNN-accelerated استفاده کرده اند. این تیم مدل خود را در 50،000 عکس در مجموعه اعتبار سنجی ImageNet آموزش دادند.
💡انتظار میره که این مدل هوش مصنوعی در حوزه پزشکی جهت #بهبود تصاویر #پزشکی #MRI که معمولا به پردازشهای گسترده ای برای حذف نویز دارند، استفاده شوند.
همچنین میتواند در بهبود تصاویری که در معرض تابش طولانی تلسکوپها(که برای آستروفوفوگرافی استفاده میشوند) در آسمان شب قرار میگیرند استفاده شوند.
این الگوریتم همچنین میتواند زمان پردازش تصاویر جهت کاهش نویز را کم کند!
🔹 ولی اینکه این الگوریتم باعث می شود احتمال #سرقت تصاویر بالا بره برای ما یه سوالی هست که در سر ما میگذرد!
مرجع:
https://www.google.com/amp/s/www.firstpost.com/tech/news-analysis/nvidia-researchers-have-trained-an-ai-to-remove-noise-and-text-from-images-4725191.html/amp
#خبر
#هوش_مصنوعی
#پردازش_تصویر
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
✔️ @onlineBME
👨💻نویسنده: محمد نوری زاده چرلو
✍ چه اتفاقی میافته اگه شما به یک تکنولوژی هوش مصنوعی دست یابید که بتونه تمام نویزها و آرتیفکتهای تصویر را حذف کند؟! 🧐
حتی نویزهایی که در تصاویر با شدت روشنایی پایین هستند؟ عالیه نه؟😃
خب حالا اگه اون الگوریتمه متن و واترمارکها رو هم بتونه از تصویر حذف کنه چی؟! دیگه خیلی عالیه نه؟!😇
🔺گفته میشه که هر تکنولوژی هم میتونه استفاده #خوب ازش بشه و هم #بد، ولی این هیچ وقت نباید #نوآوریهارو متوقف کنه.
🔺 در آخرین تحقیقات #پردازش_تصویر ، NVIDIA در گزارشی گفته است که تیمشون تونستن یک AIی را آموزش دهند که می تونه از طریق یک رویکرد #یادگیری_عمیق، #نویز عکس های دانه دار (grainy image) رو حذف کنه. این گروه برای انجام این پروژه با دانشگاه آالو و MIT همکاری کرده است.
🔹معمولا مدل #هوش_مصنوعی نیاز داره که به تصویر بدون نویز و تصویر نویزی نگاه کنه و #تفاوت بین دو تصویر رو بفهمه و از این طریق یاد بگیره که نویز تصاویر نویزی رو حذف و یا کم کنه. (چیزی که ما تو دوره شبکه عصبی و پردازش تصویر با بچه ها کار میکنیم)
اما نکته قابل توجه اینه که این مدل هوش مصنوعی ارائه شده تنها به نمونه های مشابه تصاویر نویزی نگاه میکنه و نویز تصویر را حذف میکنه!!🤔🙄
هیچ تصویر بدون نویز (تر و تمیز) به مدل AI نشون داده نشده و ولی با این حال الگورتیم تونسته به صورت خودکار یاد بگیره که چطوری تصاویر رو بهبود بده و نویزشون رو از بین ببره!
🔹 محققان بیان کرده اند که: این امکان پذیره که یاد بگیریم سیگنالهای نویزی رو بدون مشاهده تصاویر بدون نویز بازسازی کنیم، اونم با عملکرد نزدیک و یا برابر با مدلهایی که با نگاه کردن به تصاویر بدون نویز، نویز تصویر رو کم می کنند!
"تیم GPU های NVIDIA Tesla P100 با چارچوب یادگیری عمیق TensorFlow cuDNN-accelerated استفاده کرده اند. این تیم مدل خود را در 50،000 عکس در مجموعه اعتبار سنجی ImageNet آموزش دادند.
💡انتظار میره که این مدل هوش مصنوعی در حوزه پزشکی جهت #بهبود تصاویر #پزشکی #MRI که معمولا به پردازشهای گسترده ای برای حذف نویز دارند، استفاده شوند.
همچنین میتواند در بهبود تصاویری که در معرض تابش طولانی تلسکوپها(که برای آستروفوفوگرافی استفاده میشوند) در آسمان شب قرار میگیرند استفاده شوند.
این الگوریتم همچنین میتواند زمان پردازش تصاویر جهت کاهش نویز را کم کند!
🔹 ولی اینکه این الگوریتم باعث می شود احتمال #سرقت تصاویر بالا بره برای ما یه سوالی هست که در سر ما میگذرد!
مرجع:
https://www.google.com/amp/s/www.firstpost.com/tech/news-analysis/nvidia-researchers-have-trained-an-ai-to-remove-noise-and-text-from-images-4725191.html/amp
#خبر
#هوش_مصنوعی
#پردازش_تصویر
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
✔️ @onlineBME
Tech2
NVIDIA researchers have trained an AI to remove noise and text from images
NVIDIA's AI will be presented at the International Conference on Machine Learning in Stockholm.