onlinebme
4.82K subscribers
1.48K photos
574 videos
346 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN) #پیاده‌سازی_مقاله #پروژه_عملی #طبقه‌بندی #کلاسبندی 🏢 آکادمی آنلاین…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)

در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را طبق دو #مقاله تخصصی آموزش می‌دهیم تا با پیاده‌سازی مقالات تخصصی نیز آشنا شوید. این شبکه از لحاظ تصمیم‌گیری شباهت زیادی با کلاسبند #بیزین دارد و همین باعث شده عملکرد طبقه‌بندی بالایی داشته باشد و در عمل خیلی از این شبکه عصبی استفاده کنند. همانطور که می‌دانید طبقه‌بند بیزین اگر تمام شرایطی که نیاز دارد فراهم شود #بهینه‌ترین طبقه‌بند بین تمام طبقه‌بندها خواهد بود. ولی از آنجا که در عمل نمی‌توان تمام شرایط را فراهم کرد در نتیجه عملکرد بهینه‌ای ندارد. شبکه عصبی PNN  از چهار لایه input layer, pattern layer, summation layer  و output layer تشکیل شده است و از یک ایده بسیار جالبی برای کلاسبندی استفاده می کند. #تئوری یادگیری این شبکه عصبی را طبق دو مقاله تخصصی ضمیمه شده در پیوست،  به زبان ساده توضیح داده و سپس در متلب #مرحله_به_مرحله پیاده سازی می کنیم. و برای اینکه با کارایی خوب این شبکه آشنا شوید دو پروژه تخصصی تشخیص سرطان سینه  و کلاسبندی داده سه کلاسهiris (گل زنبق) با استفاده از شبکه عصبی PNN انجام داده‌ایم. و در آخر #مزایا_و_معایب هر روش را با مثال عملی توضیح داده ایم.

🔺نکته: مباحث ‌این جلسه طبق مطالب مقالات پیوست می‌باشد.

 
💡 جهت خرید جلسه دهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/pnn-neural-network/

💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢 مدرس : محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران مدت زمان ویدیوها: 19 ساعت اولین دوره تخصصی در ایران که در آن تمام اصول مورد نیاز برای پردازش سیگنال…
💢 پکیج آموزشی دوره تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی ( motor imagery)💢

مدرس : محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
مدت زمان ویدیوها: 19 ساعت

واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی می‌کند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنال‌های حیاتی اندازه‌گیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبه‌های انتزاعی حالت شناختی فرد را پیش بینی می‌کند.  در دوره تخصصی پردازش سیگنال EEG  بطور کامل در مورد سیستم BCI  توضیح داده شده است.
🔵 واسط مغز و کامپیوتر مبتنی بر تصور حرکتی(motor imagery)، حالتی که شخص تصور می‌کند را از روی سیگنال‌های مغزی( EEG) فرد، تشخیص داده و به دستور تبدیل می‌کند. هدف فناوری BCI این است که یک #راه_ارتباطی جدید برای افراد معلول (فلج) ایجاد کند به طوری که افراد هیچ وابستگی‌ای به کنترل عضلات نداشته باشند. سیگنال EEG یکی از ورودی‌هایی هست که BCI از طریق این سیگنال ارتباط بین شخص و محیط بیرونی را فراهم می‌کند. در BCI مبتنی بر تصور حرکتی از شخص خواسته‌ می‌شود تا حرکتی را بدون اینکه انجام دهد تصور کند، که در نتیجه آن رخدادهایی مرتبط با تصور در مغز رخ می‌دهد. هدف #BCI این است که از روی سیگنال‌های EEG نوع حرکت تصور شده توسط شخص را تشخیص دهد. تشخیص نوع تصوری که فرد انجام داده از روی  سیگنال #EEG که روزلوشن مکانی مناسبی ندارد کار بسیار سختی است و به الگوریتمهای پیشرفته ای نیاز است.

🔹ما در این دوره تخصصی تمام مباحثی که برای پردازش داده‌های #EEG مبتنی بر تسک تصوری حرکتی هست را آموزش می‌دهیم و برای اینکه با عملکرد عملی این الگوریتم ها آشنا شوید، چندین #پروژه_عملی طبق چند #مقاله_تخصصی روی داده های واقعی سایت #BCI_competition انجام میدهیم.

🗂از سه مجموع داده EEG مبتنی بر تسک تصور حرکتی در این دوره استفاده شده است. در ابتدا #پروسه_ثبت و اطلاعات مربوط به این داده‌ها را کامل توضیح می‌دهیم، باندهای #فرکانسی که مرتبط با تصور حرکتی و #مناطق مغزی مرتبط با تصور حرکتی را توضیح می‌هیم. سپس شروع به تحلیل داده‌ها می‌کنیم. در ادامه انواع فیلترهای #مکانی و #فرکانسی جهت #کاهش_نویز سیگنال و #source_localization را توضیح داده  و به صورت #گام_به_گام در متلب پیاده سازی کرده و روی داده اعمال می‌کنیم، در ادامه روش‌های استخراج ویژگی و کلاسبندی داده تصوری حرکتی را توضیح داده و روی داده پیاده‌‌سازی می‌کنیم.
در این دوره تئوری الگوریتم معروف #CSP ، الگوهای مکانی مشترک (Common Special Patterns)
را به زبان ساده توضیح د
اده و سپس #گام_به_گام در متلب پیاده‌سازی کرده و بر روی داده اعمال می‌کنیم.

در نهایت معایب و مزایای CSP را بررسی می‌کنیم و برای حل مشکل این الگورتیم معروف، الگورتیم‌ بهبود یافته شده CSP یعنی
#FBCSP -filter bank CSP
 را پیاده‌سازی می‌کنیم.

در این دوره برای کلاسبندی داده‌ها از سه کلاسبند معروف بنام
 SVM-support vector machine  knn-k nearest neighbors 
lda-linear discriminant analysis
استفاده کرده‌ایم.

🔹برای ارزیابی و اعتبارسنجی مدلهای طراحی شده از چهار روش معروف
 k-fold cross validation
the hold out method
random subsampling 
leave one out 
استفاده کرده ایم.

در پایان این دوره، شرکت‌کننده دیگر هیچ مشکلی در انجام #پروژه‌های_عملی  و پردازش سیگنال‌های EEG مبتنی بر تصوری حرکتی و #پیاده‌سازی_مقالات تخصصی جهت بهبود عملکرد کلاسبندی نخواهد داشت.

🔴4 تا مقاله تخصصی در این دوره پیاده سازی شده است که میتوانید برای #پروژه_های_درسی یا #پایان_نامه خود استفاده کنید.
🔵پروژه های عملی بر روی سه داده معروف bci competition انجام شده اند👌
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
💢سرفصل پکیج آموزشی دوره‌ی تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی💢 🔘 واسط مغز و کامپیوتر چیست؟ 🔺انواع واسط مغز و کامپیوتر؟ 🔺کاربردهای واسط مغز کامپیوتر 🔺واسط مغز و کامپیوتر مبتنی بر EEG 🔺سیگنال EEG 🔺ریتمهای سیگنال EEG مبتنی بر تسک تصور حرکتی 🔺نواحی…
🔹 دوره #تخصصی و #پروژه_محور پردازش سیگنال eeg مبتنی بر تصور حرکتی

هدف ما در دوره این بوده که مطالب طوری آموزش داده بشوند که دوستان بتوانند علاوه بر یادگیری مباحث، از #پروژه_ها و #مقالات #پیاده‌سازی شده در پروژه های خود استفاده کنند. 👌

4 #مقاله_تخصصی در این دوره پیاده سازی شده که دوستان میتوانند از آنها در کارهای خود استفاده کنند.
برای اینکه دوره برای همه علاقه مندان مفید باشه پروژه های عملی روی سه داده معروف سایت bci competition پیاده سازی شده اند. دو تا از پایگاه داده ها #دوکلاسه هستند و یکیش #4کلاسه هست.

لازم به ذکر است که پروژه ها و مقالاتی که در این دوره پیاده سازی شده اند میتوانند برای افرادی که #پایان_نامه یا #پروژه_های_درسی دارند مورد استفاده قرار بگیرند👇👇👇👇
💡پروژه مناسب برای درس پردازش سیگنالهای حیاتی
💡پروژه مناسب برای درس واسط مغز و کامپیوتر (BCI)
💡پروژه مناسب برای درس شناسایی آماری الگو (پترن)

دوستانی که هر دوره رو تهیه کرده اند میتوانند هر دو دوره رو باهم ترکیب کنند و برای پروژه هایی درسی و پایان نامه خودشون استفاده کنند
از روشهای گفته شده در این دوره برای پیش پردازش و استخراج ویژگی استفاده کنند.
Butterworth filter + CAR/Laplacian + CSP /FCSP
و برای کلاسبندی به جای کلاسبندهای آموزش داده شده در این دوره (از قبیل SVM, KNN, LDA ) از شبکه های عصبی آموزش داده شده در دوره #شبکه_عصبی استفاده کنند.
delta bar rule MLP
RBF
ELM
PNN
و پروژه و پایان نامه خودشون رو پیش ببرند😊
دوستانی که این دوره رو بگذرونن در پیاده سازی مقالات
RCSP, CSSP ,CSSSP
ومقالاتی شبیه به اینها مشکلی نخواهند داشت😉


----------------onlinebme------------
💡 ایده پیشنهادی ما برای شما😊
Butterworth Filter + CAR/Laplacian + CSP /FCSP + MLP (Delta-bar-rule) /RBF/ELM/PNN
------------------------------------------


جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme