سلام به همه دوستان و همراهان کانال @IUST_Bioelecteric
📺📹🎥 از این به بعد قصد داریم مباحث تخصصی مهندسی پزشکی را به صورت #ویدیو در کانال آموزش دهیم.
🔹 مباحثی که در کانال به صورت تخصصی آموزش داده خواهند شد:👇👇👇
#پردازش_تصاویر_پزشکی در محیط #متلب
#پردازش_سیگنالهای_حیاتی در محیط #متلب
#شبکه_های_عصبی در محیط #متلب
#برنامه_نویسی_متلب از #مقدماتی تا #پیشرفته
نحوه شبیه سازی #مقالات در محیط #متلب
با ما همراه باشید...😊😊
🔸لطفا کانال ما را به دوستان خودتون معرفی کنید....🌹🌹🌹
@IUST_Bioelecteric
📺📹🎥 از این به بعد قصد داریم مباحث تخصصی مهندسی پزشکی را به صورت #ویدیو در کانال آموزش دهیم.
🔹 مباحثی که در کانال به صورت تخصصی آموزش داده خواهند شد:👇👇👇
#پردازش_تصاویر_پزشکی در محیط #متلب
#پردازش_سیگنالهای_حیاتی در محیط #متلب
#شبکه_های_عصبی در محیط #متلب
#برنامه_نویسی_متلب از #مقدماتی تا #پیشرفته
نحوه شبیه سازی #مقالات در محیط #متلب
با ما همراه باشید...😊😊
🔸لطفا کانال ما را به دوستان خودتون معرفی کنید....🌹🌹🌹
@IUST_Bioelecteric
onlinebme
💡 شروع ثبت نام دوره عملی پیاده سازی شبکه های عصبی در متلب( #تهران و #تبریز) ✅ جهت ثبت نام با شماره ی زیر تماس بگیرید: 0936-038-2687 @Bio_engineerr ➖➖ @IUST_Bioelecteric
💡✅ توضیحات تکمیلی دوره شبکه عصبی:
✍️ امروزه در ایران دوره های مختلفی برای درس شبکه عصبی برگزار میشود و البته هر کدام مزایای خودشون رو دارند و با اهدافی دوره ها رو برگزار میکنند.
گروه تخصصی و آموزشی مدرسین علم و صنعت تهران هم سعی براین دارد که در این مسیر فعالیت کند، اما به صورت #متفاوت!
سعی ما بر این است که یک دوره صرفا عملی و یا صرفا تئوری برگزار نکینم. ما در این دوره علاوه برمباحث تئوری، همزمان مباحث عملی رو به صورت گام به گام آموزش میدهیم.
🔺 اولین #وجه_تمایز دوره شبکه عصبی ما با سایر دوره ها این است که در این دوره نحوه استفاده از #توابع_آماده_متلب آموزش داده نمیشود بلکه نحوهی #پیاده_سازی شبکه ها بطور کامل آموزش داده می شود و مطمئنا شرکتکنندگان بعد از #تمرین و تکرار مطالبی که آموزش داده میشود، در پیادهسازی شبکهها، #بهبود شبکهها، شبیهسازی #مقالات و استفاده از شبکهها در #پروژههای_عملی دچار مشکل نخواهند شد.
🔺 دوره به صورت #آکادمیک هست و سعی بر این است که تمام مباحث #کتاب معروف Siomon Haykin آموزش داده شود. کتاب Siomon Haykin، کتابی #استاندارد برای یادگیری شبکههای عصبی است که در بیشتر دانشگاههای داخل و خارج کشور تدریس میشود. در ابتدای هر جلسه، مباحث تئوری کتاب آموزش داده میشود و سپس به طور گام به گام در متلب پیادهسازی میشود.
از آنجا شرکت کنندگان علاوه بر یادگیری مباحث عملی، مباحث تئوری را نیز یاد میگیرند لذا شرکتکنندگان بعد از اتمام دوره، میتوانند #نمره_کاملی در درس شبکه عصبی (در هر مقطعی) بگیرند که این یکی از مزیتهای دیگر دوره شبکه عصبی ما است.
از آنجا که دوره ما #پروژه محور است، سعی شده مسائل و پروژه های مختلفی با استفاده از شبکه عصبی انجام شود تا شرکت کنندگان بعد از اتمام دوره بتوانند پروژه های خود را با شبکه های عصبی انجام دهند.
✅💡پروژه هایی که در این دوره با استفاده از شبکه های عصبی انجام داده میشوند:
💡تشخیص #سرطان_سینه با استفاده از شبکه های عصبی
💡تشخیص بیماری #صرع از روی سیگنالهای مغزی با استفاده از شبکه های عصبی
💡تخمین کیفیت #شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
💡پیش بینی #نرخ_ارز با استفاده از شبکه های عصبی
💡کلاسبندی داده های دوکلاسه و #چندکلاسه، مثل داده سه کلاسه #iris (داده ی معروف در سایت uci)
💡حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 تخمین کیفیت شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
تمامی شبکه ها از #صفرتاصد آموزش داده میشوند، در ابتدا، مباحث تئوری آموزش داده میشود و سپس به صورت گام به گام در متلب پیادهسازی می شوند و بعد از پیاده سازی در پروژه های عملی استفاده می شوند.
#مزایا و #معایب هر شبکه به صورت #واقعی در پروژههای عملی نشان داده میشود و هنرجو از این طریق #درک بهتری نسبت به شبکهها پیدا میکند.
🔺علاوه بر مباحث کتاب Siomon Haykin ، دو شبکه عصبی معروفPNN و ELMرا طبق مقالات معتبر پیادهسازی می¬کنیم که از این طریق شرکتکنندگان با پیادهسازی مقالات نیز آشنا میشوند.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
💡 برنامهنویسی در محیط متلب
💡پیادهسازی تمامی شبکههای عصبی در متلب
💡 حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 استفاده از شبکههای عصبی در پروژههای کلاسبندی و رگرسیون
💡 انجام پروژههای عملی با استفاده از شبکههای عصبی
💡 کاهش بعد و استخراج ویژگی با استفاده از شبکههای عصبی
💡 حل مسائل کلاسبندی با استفاده از شبکههای عصبی
💡 حل مسائل پیشبینی با استفاده از شبکههای عصبی
💡 خوشهبندی دادهها با استفاده از شبکههای عصبی
✅ 💡بعد از اتمام دوره دانشجویانی که طول دوره فعال بودند و نمره قابل قبولی دریافت کردند، انتخاب می شوند تا در کارهای عملی و پروژههای پژوهشی جهت نوشتن مقالات همکاری شود.
https://telegram.me/joinchat/BcXDaEEL4FjSZ9Uxrki-9Q
➖➖➖➖➖
@IUST_Bioelecteric
✍️ امروزه در ایران دوره های مختلفی برای درس شبکه عصبی برگزار میشود و البته هر کدام مزایای خودشون رو دارند و با اهدافی دوره ها رو برگزار میکنند.
گروه تخصصی و آموزشی مدرسین علم و صنعت تهران هم سعی براین دارد که در این مسیر فعالیت کند، اما به صورت #متفاوت!
سعی ما بر این است که یک دوره صرفا عملی و یا صرفا تئوری برگزار نکینم. ما در این دوره علاوه برمباحث تئوری، همزمان مباحث عملی رو به صورت گام به گام آموزش میدهیم.
🔺 اولین #وجه_تمایز دوره شبکه عصبی ما با سایر دوره ها این است که در این دوره نحوه استفاده از #توابع_آماده_متلب آموزش داده نمیشود بلکه نحوهی #پیاده_سازی شبکه ها بطور کامل آموزش داده می شود و مطمئنا شرکتکنندگان بعد از #تمرین و تکرار مطالبی که آموزش داده میشود، در پیادهسازی شبکهها، #بهبود شبکهها، شبیهسازی #مقالات و استفاده از شبکهها در #پروژههای_عملی دچار مشکل نخواهند شد.
🔺 دوره به صورت #آکادمیک هست و سعی بر این است که تمام مباحث #کتاب معروف Siomon Haykin آموزش داده شود. کتاب Siomon Haykin، کتابی #استاندارد برای یادگیری شبکههای عصبی است که در بیشتر دانشگاههای داخل و خارج کشور تدریس میشود. در ابتدای هر جلسه، مباحث تئوری کتاب آموزش داده میشود و سپس به طور گام به گام در متلب پیادهسازی میشود.
از آنجا شرکت کنندگان علاوه بر یادگیری مباحث عملی، مباحث تئوری را نیز یاد میگیرند لذا شرکتکنندگان بعد از اتمام دوره، میتوانند #نمره_کاملی در درس شبکه عصبی (در هر مقطعی) بگیرند که این یکی از مزیتهای دیگر دوره شبکه عصبی ما است.
از آنجا که دوره ما #پروژه محور است، سعی شده مسائل و پروژه های مختلفی با استفاده از شبکه عصبی انجام شود تا شرکت کنندگان بعد از اتمام دوره بتوانند پروژه های خود را با شبکه های عصبی انجام دهند.
✅💡پروژه هایی که در این دوره با استفاده از شبکه های عصبی انجام داده میشوند:
💡تشخیص #سرطان_سینه با استفاده از شبکه های عصبی
💡تشخیص بیماری #صرع از روی سیگنالهای مغزی با استفاده از شبکه های عصبی
💡تخمین کیفیت #شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
💡پیش بینی #نرخ_ارز با استفاده از شبکه های عصبی
💡کلاسبندی داده های دوکلاسه و #چندکلاسه، مثل داده سه کلاسه #iris (داده ی معروف در سایت uci)
💡حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 تخمین کیفیت شراب با استفاده از شبکه های عصبی(داده معروف سایت UCI)
تمامی شبکه ها از #صفرتاصد آموزش داده میشوند، در ابتدا، مباحث تئوری آموزش داده میشود و سپس به صورت گام به گام در متلب پیادهسازی می شوند و بعد از پیاده سازی در پروژه های عملی استفاده می شوند.
#مزایا و #معایب هر شبکه به صورت #واقعی در پروژههای عملی نشان داده میشود و هنرجو از این طریق #درک بهتری نسبت به شبکهها پیدا میکند.
🔺علاوه بر مباحث کتاب Siomon Haykin ، دو شبکه عصبی معروفPNN و ELMرا طبق مقالات معتبر پیادهسازی می¬کنیم که از این طریق شرکتکنندگان با پیادهسازی مقالات نیز آشنا میشوند.
✅ شرکت کنندگان بعد از اتمام این دوره، قادر خواهند بود به:
💡 برنامهنویسی در محیط متلب
💡پیادهسازی تمامی شبکههای عصبی در متلب
💡 حل مسائل مختلف از قبیل گیتهای منطقی(and, or, xor,…) با استفاده از شبکههای عصبی
💡 استفاده از شبکههای عصبی در پروژههای کلاسبندی و رگرسیون
💡 انجام پروژههای عملی با استفاده از شبکههای عصبی
💡 کاهش بعد و استخراج ویژگی با استفاده از شبکههای عصبی
💡 حل مسائل کلاسبندی با استفاده از شبکههای عصبی
💡 حل مسائل پیشبینی با استفاده از شبکههای عصبی
💡 خوشهبندی دادهها با استفاده از شبکههای عصبی
✅ 💡بعد از اتمام دوره دانشجویانی که طول دوره فعال بودند و نمره قابل قبولی دریافت کردند، انتخاب می شوند تا در کارهای عملی و پروژههای پژوهشی جهت نوشتن مقالات همکاری شود.
https://telegram.me/joinchat/BcXDaEEL4FjSZ9Uxrki-9Q
➖➖➖➖➖
@IUST_Bioelecteric
Telegram
onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائهدهندهی پکیجهای آموزشی پروژه محور:
برنامهنویسی متلب-پایتون
پردازش تصویر&سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکههای عصبی
واسط مغز-کامپیوتر
تماس👇
09360382687
@onlineBME_admin
سایت
www.onlinebme.com
ارائهدهندهی پکیجهای آموزشی پروژه محور:
برنامهنویسی متلب-پایتون
پردازش تصویر&سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکههای عصبی
واسط مغز-کامپیوتر
تماس👇
09360382687
@onlineBME_admin
سایت
www.onlinebme.com
onlinebme
جزئیات دوره جامع مهندسی پزشکی.pdf
💡✅ توضیحات تکمیلی دوره جامع مهندسی پزشکی:
✍️طی تجربیات چند سال گذشته متوجه شدیم که اکثر دانشجویان در مقطع کارشناسی ارشد و دکتری در انتخاب موضوع پایان نامه دچار مشکلات و سردرگمیهایی میشوند. یکی از دلایل اصلی سردرگمی دانشجویان مهندسی پزشکی در انتخاب موضوع پایاننامه، نداشتن #دید_کافی از این رشته است. برای مثال بسیاری از دانشجویان کارشناسی، رشته متفاوتی داشتهاند و در کارشناسی ارشد وارد رشته مهندسی پزشکی(بیوالکتریک) شدهاند که هیچ پیشزمینهای از این رشته ندارند و به علت محدودیت زمانی در ارشد گاها" در انتخاب موضوع پایاننامه که اصلیترین #بخش کارشناسی ارشد است و به نوعی #آینده_کاری دانشجو را تعیین میکند، دچار اشتباه میشوند.
🔺مشکل دیگر دانشجویان نداشتن تخصص کافی در پیادهسازی مقالات تخصصی و انجام تجزیه و تحلیل دادههای مهندسی پزشکی است.
کارشناسی ارشد دورهای کوتاه ولی پرپیچ و خمی است و در هر ترم دروس تخصصی ارائه میشود که در پایان ترم دانشجو باید یک #پروژه عملی برای درس موردنظر انجام دهد. اکثر #اساتید برای آمادهسازی دانشجویان جهت انجام پایاننامه، پروژههایی تعریف میکنند و دانشجویان باید طبق #مقالات_تخصصی پروژهها را انجام دهند.
ازطرف دیگه بسیاری از دانشجویان با دادههای مهندسی پزشکی آشنا نیستند لذا در انجام پروژه و #پیاده_سازی مقالات به مشکل میخورند.
📚دروس شناسایی آماری الگو و داده کاوی، جزء دروسی هستند که در اکثر دانشگاههای معتبر از جمله دانشگاههای تهران ارائه میشوند و در اکثر پروژههای مهندسی پزشکی از مباحث این دروس استفاده میشوند. دانشجویانی که این دروس را گذرانده باشند مطمئنا" در انجام پایاننامه خود #موفق خواهند بود.
در دوره جامع مهندسی پزشکی مباحث دو درس #پترن و #داده_کاوی به طور کامل آموزش داده میشوند و برای اینکه مطالب ملموستر شوند، الگوریتمها را روی دادههای واقعی مهندسی پزشکی اعمال میشوند. در واقع با یک #تیر دو #نشان می زنیم😃. در این دوره علاوه بر آموزش مباحث تئوری و عملی الگوریتمهای دو درس، پروژه های مختلفی آموزش داده میشود.
✅ این دوره تنها دورهای است که سعی کرده تمام مباحث مهندسی پزشکی را پوشش دهد!
⚠️ نکتهای که باید توجه شود این است که این دوره کاملا تخصصی است و مخصوص دانشجویان #ارشد و #دکتری طراحی شده است لذا برای دانشجویان کارشناسی توصیه نمیشود!
🌐 داده هایی که در این دوره استفاده می شود داده های مرتبط با مهندسی پزشکی و شرکتکنندگان علاوه بر یادگیری مباحث، با دادههای مهندسی پزشکی نیز آشنا میشوند.
◀️در این دوره ما #نحوه_کار با دادههای مختلف را آموزش میدهیم و دانشجویان دیگر #سختی کار با دادهها را تجربه نخواهند کرد😊.
💯 بطبع این دوره برای دانشجویان مهندسی پزشکی بسیار مفیدتر خواهد بود و به آنها دید بهتری از پروژه ها میدهد ولی دانشجویانی که قصد یادگیری مباحث درس پترن و داده کاوی را دارند نیز میتوانند در این دوره شرکت کنند.
🌀پروژههایی که طول دوره آموزش داده می شوند نتیجه چهار سال #تجربه گروه مهندسی پزشکی دانشجویان علم و صنعت تهران هست و سعی بر این است که پروژههای خوب و بروزی که امروزه در این رشته کار میکنند را انتخاب کنیم و براساس مقالات معتبر شبیهسازی کنیم.
✳️بعد اتمام دوره انتظار داریم دانشجویان دید بهتری از پروژهها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند، در #شبیه_سازی_مقالات تخصصی حوزه مهندسی پزشکی و در انجام #پروژه_پایاننامه مشکلی نداشته باشند.
🔺در این چند سال متوجه شدیم که اکثر دانشجویان مهندسی پزشکی مباحث را بلدند ولی در پیادهسازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند و چگونه یک پروژه را از #صفرتاصد در #متلب به طور تخصصی انجام دهند.
🌀 5 پروژه عملی از صفر تا صد در متلب پیادهسازی میشود و شرکتکنندگان با موضوعات مختلفی آشنا شده و کار با دادههای مختلف مهندسیی پزشکی را یاد میگیرند.
⏪برای اطلاع از جزئیات مباحث و پروژه هایی که در این دوره آموزش داده میشوند، فایل جزئیات دوره(PDF ) را مطالعه کنید.
➖➖➖➖➖
@IUST_Bioelecteric
✍️طی تجربیات چند سال گذشته متوجه شدیم که اکثر دانشجویان در مقطع کارشناسی ارشد و دکتری در انتخاب موضوع پایان نامه دچار مشکلات و سردرگمیهایی میشوند. یکی از دلایل اصلی سردرگمی دانشجویان مهندسی پزشکی در انتخاب موضوع پایاننامه، نداشتن #دید_کافی از این رشته است. برای مثال بسیاری از دانشجویان کارشناسی، رشته متفاوتی داشتهاند و در کارشناسی ارشد وارد رشته مهندسی پزشکی(بیوالکتریک) شدهاند که هیچ پیشزمینهای از این رشته ندارند و به علت محدودیت زمانی در ارشد گاها" در انتخاب موضوع پایاننامه که اصلیترین #بخش کارشناسی ارشد است و به نوعی #آینده_کاری دانشجو را تعیین میکند، دچار اشتباه میشوند.
🔺مشکل دیگر دانشجویان نداشتن تخصص کافی در پیادهسازی مقالات تخصصی و انجام تجزیه و تحلیل دادههای مهندسی پزشکی است.
کارشناسی ارشد دورهای کوتاه ولی پرپیچ و خمی است و در هر ترم دروس تخصصی ارائه میشود که در پایان ترم دانشجو باید یک #پروژه عملی برای درس موردنظر انجام دهد. اکثر #اساتید برای آمادهسازی دانشجویان جهت انجام پایاننامه، پروژههایی تعریف میکنند و دانشجویان باید طبق #مقالات_تخصصی پروژهها را انجام دهند.
ازطرف دیگه بسیاری از دانشجویان با دادههای مهندسی پزشکی آشنا نیستند لذا در انجام پروژه و #پیاده_سازی مقالات به مشکل میخورند.
📚دروس شناسایی آماری الگو و داده کاوی، جزء دروسی هستند که در اکثر دانشگاههای معتبر از جمله دانشگاههای تهران ارائه میشوند و در اکثر پروژههای مهندسی پزشکی از مباحث این دروس استفاده میشوند. دانشجویانی که این دروس را گذرانده باشند مطمئنا" در انجام پایاننامه خود #موفق خواهند بود.
در دوره جامع مهندسی پزشکی مباحث دو درس #پترن و #داده_کاوی به طور کامل آموزش داده میشوند و برای اینکه مطالب ملموستر شوند، الگوریتمها را روی دادههای واقعی مهندسی پزشکی اعمال میشوند. در واقع با یک #تیر دو #نشان می زنیم😃. در این دوره علاوه بر آموزش مباحث تئوری و عملی الگوریتمهای دو درس، پروژه های مختلفی آموزش داده میشود.
✅ این دوره تنها دورهای است که سعی کرده تمام مباحث مهندسی پزشکی را پوشش دهد!
⚠️ نکتهای که باید توجه شود این است که این دوره کاملا تخصصی است و مخصوص دانشجویان #ارشد و #دکتری طراحی شده است لذا برای دانشجویان کارشناسی توصیه نمیشود!
🌐 داده هایی که در این دوره استفاده می شود داده های مرتبط با مهندسی پزشکی و شرکتکنندگان علاوه بر یادگیری مباحث، با دادههای مهندسی پزشکی نیز آشنا میشوند.
◀️در این دوره ما #نحوه_کار با دادههای مختلف را آموزش میدهیم و دانشجویان دیگر #سختی کار با دادهها را تجربه نخواهند کرد😊.
💯 بطبع این دوره برای دانشجویان مهندسی پزشکی بسیار مفیدتر خواهد بود و به آنها دید بهتری از پروژه ها میدهد ولی دانشجویانی که قصد یادگیری مباحث درس پترن و داده کاوی را دارند نیز میتوانند در این دوره شرکت کنند.
🌀پروژههایی که طول دوره آموزش داده می شوند نتیجه چهار سال #تجربه گروه مهندسی پزشکی دانشجویان علم و صنعت تهران هست و سعی بر این است که پروژههای خوب و بروزی که امروزه در این رشته کار میکنند را انتخاب کنیم و براساس مقالات معتبر شبیهسازی کنیم.
✳️بعد اتمام دوره انتظار داریم دانشجویان دید بهتری از پروژهها داشته باشند و بتوانند موضوعات مناسبی برای پایان نامه دکتری و کارشناشی ارشد انتخاب کنند، در #شبیه_سازی_مقالات تخصصی حوزه مهندسی پزشکی و در انجام #پروژه_پایاننامه مشکلی نداشته باشند.
🔺در این چند سال متوجه شدیم که اکثر دانشجویان مهندسی پزشکی مباحث را بلدند ولی در پیادهسازی و تحلیل داده ها مشکل دارند. در این دوره ما آموزش می دهیم که چگونه داده را دانلود، تجزیه و تحلیل بکنند و چگونه یک پروژه را از #صفرتاصد در #متلب به طور تخصصی انجام دهند.
🌀 5 پروژه عملی از صفر تا صد در متلب پیادهسازی میشود و شرکتکنندگان با موضوعات مختلفی آشنا شده و کار با دادههای مختلف مهندسیی پزشکی را یاد میگیرند.
⏪برای اطلاع از جزئیات مباحث و پروژه هایی که در این دوره آموزش داده میشوند، فایل جزئیات دوره(PDF ) را مطالعه کنید.
➖➖➖➖➖
@IUST_Bioelecteric
onlinebme
❌💢شروع ثبت نام دوره فشرده پردازش سیگنال eeg 💢❌ ✅ در این دوره تمام اصول مورد نیاز برای پردازش سیگنال eeg از دید یادگیری ماشین و #پترن آموزش داده میشود. #سرفصل_مطالب 🔵پیش پردازش سیگنال در حوزه زمان و فرکانس جهت حذف نویز و آرتیفکت 🔴 نحوه بدست آوردن ریتمهای…
⁉️این دوره برای چه کسانی پیشنهاد میشود؟
✅ افرادی که پروژه درسی یا پایان نامه آنها در راستای سیگنال EEG هست و نیاز هست که به صورت تخصصی سیگنال EEG را تحلیل کنند
✅ افرادی که میخواهند وارد حوزه پردازش سیگنال شوند
✅ افرادی که درس پترن، یادگیری ماشین و پردازش سیگنال دارند ( از پروژه هایی که در کلاس انجام میشه میتونند به عنوان پروژه درسی استفاده کنند )
✅ افرادی که میخواهند در حوزه واسط مغز و کامپیوتر( BCI) کار کنند!
🔴 این دوره پیش نیاز اکثر دوره های پردازش سیگنال هست و تمامی مباحث پایه مورد نیاز یک دانشجو در این دوره آموزش داده میشود!
🔵 دوستانی که دوره شرکت میکنند علاوه بر مطالبی که در بالا ذکر شد با پیاده سازی #مقالات تخصصی در پردازش سیگنال و پترن آشنا میشوند و میتوانند به کمک #کدها و مطالبی که در کلاس یاد میگیرند مقالات تخصصی رو #پیاده_سازی کنند😊
✅ برنامه ریزی کلاس بعد از تکمیل ظرفیت مشخص خواهد شد
#زمانبندی دوره به نحوی خواهد بود که دوستان شهرای دیگه هم بتونند در دوره شرکت کنند.
#ظرفیت باقی مانده دوره : 3 نفر
مدت دوره: 15 ساعت
مدرس دوره: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
☎️ جهت کسب اطلاعات بیشتر میتوانید شماره زیر تماس بگیرید:
0936-038-2687
@onlinebme_admin
✅ افرادی که پروژه درسی یا پایان نامه آنها در راستای سیگنال EEG هست و نیاز هست که به صورت تخصصی سیگنال EEG را تحلیل کنند
✅ افرادی که میخواهند وارد حوزه پردازش سیگنال شوند
✅ افرادی که درس پترن، یادگیری ماشین و پردازش سیگنال دارند ( از پروژه هایی که در کلاس انجام میشه میتونند به عنوان پروژه درسی استفاده کنند )
✅ افرادی که میخواهند در حوزه واسط مغز و کامپیوتر( BCI) کار کنند!
🔴 این دوره پیش نیاز اکثر دوره های پردازش سیگنال هست و تمامی مباحث پایه مورد نیاز یک دانشجو در این دوره آموزش داده میشود!
🔵 دوستانی که دوره شرکت میکنند علاوه بر مطالبی که در بالا ذکر شد با پیاده سازی #مقالات تخصصی در پردازش سیگنال و پترن آشنا میشوند و میتوانند به کمک #کدها و مطالبی که در کلاس یاد میگیرند مقالات تخصصی رو #پیاده_سازی کنند😊
✅ برنامه ریزی کلاس بعد از تکمیل ظرفیت مشخص خواهد شد
#زمانبندی دوره به نحوی خواهد بود که دوستان شهرای دیگه هم بتونند در دوره شرکت کنند.
#ظرفیت باقی مانده دوره : 3 نفر
مدت دوره: 15 ساعت
مدرس دوره: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
☎️ جهت کسب اطلاعات بیشتر میتوانید شماره زیر تماس بگیرید:
0936-038-2687
@onlinebme_admin
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو "فارغ التحصیل دانشگاه علم و صنعت تهران" 9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM ) #پیادهسازی_مقاله #پروژه_عملی #رگرسیون #طبقهبندی #کلاسبندی #روشهای_ارزیابی…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
ما تا جلسه هشتم از مباحث #کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیادهسازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده میکند و این باعث میشود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث میشود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار سادهای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم میکند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص میدهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه میکند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.
🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیادهسازی کردهایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام دادهایم.
🔘 ما تا این جلسه برای #ارزیابی شبکههای عصبی از روش معمول (the hold out validation method) استفاده میکردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست میشود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی
k-fold cross validation،
random subsampling
leave one out validation
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کردهایم و درنهایت پروژههای عملی را با استفاده از این روشها ارزیابی میکنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.
🔺نکته: مباحث این جلسه طبق مطالب مقاله پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/elm-neural-networks/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
ما تا جلسه هشتم از مباحث #کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیادهسازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده میکند و این باعث میشود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث میشود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار سادهای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم میکند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص میدهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه میکند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.
🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیادهسازی کردهایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام دادهایم.
🔘 ما تا این جلسه برای #ارزیابی شبکههای عصبی از روش معمول (the hold out validation method) استفاده میکردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست میشود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی
k-fold cross validation،
random subsampling
leave one out validation
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کردهایم و درنهایت پروژههای عملی را با استفاده از این روشها ارزیابی میکنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.
🔺نکته: مباحث این جلسه طبق مطالب مقاله پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/elm-neural-networks/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شبکه عصبی ELM (جلسه نهم) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ما تا جلسه هشتم از مباحث کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم پیادهسازی دو تا شبکه عصبی معروف ELM و PNN را طبق مقالات تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی پرسپترون دو ایراد اساسی در زمان…
onlinebme
❌💢سرفصل پکیج آموزشی دورهی تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی💢❌ 🔘 واسط مغز و کامپیوتر چیست؟ 🔺انواع واسط مغز و کامپیوتر؟ 🔺کاربردهای واسط مغز کامپیوتر 🔺واسط مغز و کامپیوتر مبتنی بر EEG 🔺سیگنال EEG 🔺ریتمهای سیگنال EEG مبتنی بر تسک تصور حرکتی 🔺نواحی…
🔹 دوره #تخصصی و #پروژه_محور پردازش سیگنال eeg مبتنی بر تصور حرکتی
☘ هدف ما در دوره این بوده که مطالب طوری آموزش داده بشوند که دوستان بتوانند علاوه بر یادگیری مباحث، از #پروژه_ها و #مقالات #پیادهسازی شده در پروژه های خود استفاده کنند. 👌
✅ 4 #مقاله_تخصصی در این دوره پیاده سازی شده که دوستان میتوانند از آنها در کارهای خود استفاده کنند.
برای اینکه دوره برای همه علاقه مندان مفید باشه پروژه های عملی روی سه داده معروف سایت bci competition پیاده سازی شده اند. دو تا از پایگاه داده ها #دوکلاسه هستند و یکیش #4کلاسه هست.
✅ لازم به ذکر است که پروژه ها و مقالاتی که در این دوره پیاده سازی شده اند میتوانند برای افرادی که #پایان_نامه یا #پروژه_های_درسی دارند مورد استفاده قرار بگیرند👇👇👇👇
💡پروژه مناسب برای درس پردازش سیگنالهای حیاتی
💡پروژه مناسب برای درس واسط مغز و کامپیوتر (BCI)
💡پروژه مناسب برای درس شناسایی آماری الگو (پترن)
✅ دوستانی که هر دوره رو تهیه کرده اند میتوانند هر دو دوره رو باهم ترکیب کنند و برای پروژه هایی درسی و پایان نامه خودشون استفاده کنند
از روشهای گفته شده در این دوره برای پیش پردازش و استخراج ویژگی استفاده کنند.
Butterworth filter + CAR/Laplacian + CSP /FCSP
و برای کلاسبندی به جای کلاسبندهای آموزش داده شده در این دوره (از قبیل SVM, KNN, LDA ) از شبکه های عصبی آموزش داده شده در دوره #شبکه_عصبی استفاده کنند.
delta bar rule MLP
RBF
ELM
PNN
و پروژه و پایان نامه خودشون رو پیش ببرند😊
✅ دوستانی که این دوره رو بگذرونن در پیاده سازی مقالات
RCSP, CSSP ,CSSSP
ومقالاتی شبیه به اینها مشکلی نخواهند داشت😉
----------------onlinebme------------
💡 ایده پیشنهادی ما برای شما😊
Butterworth Filter + CAR/Laplacian + CSP /FCSP + MLP (Delta-bar-rule) /RBF/ELM/PNN
------------------------------------------
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
☘ هدف ما در دوره این بوده که مطالب طوری آموزش داده بشوند که دوستان بتوانند علاوه بر یادگیری مباحث، از #پروژه_ها و #مقالات #پیادهسازی شده در پروژه های خود استفاده کنند. 👌
✅ 4 #مقاله_تخصصی در این دوره پیاده سازی شده که دوستان میتوانند از آنها در کارهای خود استفاده کنند.
برای اینکه دوره برای همه علاقه مندان مفید باشه پروژه های عملی روی سه داده معروف سایت bci competition پیاده سازی شده اند. دو تا از پایگاه داده ها #دوکلاسه هستند و یکیش #4کلاسه هست.
✅ لازم به ذکر است که پروژه ها و مقالاتی که در این دوره پیاده سازی شده اند میتوانند برای افرادی که #پایان_نامه یا #پروژه_های_درسی دارند مورد استفاده قرار بگیرند👇👇👇👇
💡پروژه مناسب برای درس پردازش سیگنالهای حیاتی
💡پروژه مناسب برای درس واسط مغز و کامپیوتر (BCI)
💡پروژه مناسب برای درس شناسایی آماری الگو (پترن)
✅ دوستانی که هر دوره رو تهیه کرده اند میتوانند هر دو دوره رو باهم ترکیب کنند و برای پروژه هایی درسی و پایان نامه خودشون استفاده کنند
از روشهای گفته شده در این دوره برای پیش پردازش و استخراج ویژگی استفاده کنند.
Butterworth filter + CAR/Laplacian + CSP /FCSP
و برای کلاسبندی به جای کلاسبندهای آموزش داده شده در این دوره (از قبیل SVM, KNN, LDA ) از شبکه های عصبی آموزش داده شده در دوره #شبکه_عصبی استفاده کنند.
delta bar rule MLP
RBF
ELM
PNN
و پروژه و پایان نامه خودشون رو پیش ببرند😊
✅ دوستانی که این دوره رو بگذرونن در پیاده سازی مقالات
RCSP, CSSP ,CSSSP
ومقالاتی شبیه به اینها مشکلی نخواهند داشت😉
----------------onlinebme------------
💡 ایده پیشنهادی ما برای شما😊
Butterworth Filter + CAR/Laplacian + CSP /FCSP + MLP (Delta-bar-rule) /RBF/ELM/PNN
------------------------------------------
جزئیات بیشتر 👇👇👇
https://onlinebme.com/product/brain-computer-interface-package-motorimagery/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
واسط مغز و کامپیوتر، BCI، که نقش راه ارتباطی بین مغز و کامپیوتر را بازی میکند، اخیر مورد توجه بسیاری از محفقین قرار گرفته است. BCI سیستمی است که برخی از سیگنالهای حیاتی اندازهگیری شده فرد را دریافت کرده و به صورت زمان حقیقی یا تک ترایال جنبههای انتزاعی…
💡 اول ترم را با یادگیری شبکههای عصبی شروع کنیم 😊
📺 دوره #تخصصی پیاده سازی گام به گام شبکههای عصبی در متلب
🔴 #اولین دوره ای که در آن شبکه های عصبی به صورت #گام_به_گام پیاده سازی شده و روی پروژه های عملی اعمال میشوند👌
🔺#تئوری
🔺 #پیادهسازی #گام_به_گام
🔺انجام #پروژههای_عملی
✅ ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتر و راحتری با آن برقرارکنه😉
👨💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
🔹 جلسه اول: مقدمهای بر شبکهی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633
🔸 جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637
🔹 جلسه سوم: قانون یادگیری #LMS و پیادهسازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638
🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645
🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651
🔹جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661
🔸 جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664
🔹 جلسه هشتم: پیادهسازی شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679
🔸 جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687
🔹 جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694
✅ جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
#پروژه_محور
از #پروژه های انجام شده و #مقالات پیاده سازی شده در این دوره میتوانید در پروژه های درسی و #پایان_نامه خود استفاده کنید👌
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
📺 دوره #تخصصی پیاده سازی گام به گام شبکههای عصبی در متلب
🔴 #اولین دوره ای که در آن شبکه های عصبی به صورت #گام_به_گام پیاده سازی شده و روی پروژه های عملی اعمال میشوند👌
🔺#تئوری
🔺 #پیادهسازی #گام_به_گام
🔺انجام #پروژههای_عملی
✅ ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتر و راحتری با آن برقرارکنه😉
👨💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
🔹 جلسه اول: مقدمهای بر شبکهی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633
🔸 جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637
🔹 جلسه سوم: قانون یادگیری #LMS و پیادهسازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638
🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642
🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645
🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651
🔹جلسه ششم: پیادهسازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661
🔸 جلسه هفتم: پیادهسازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664
🔹 جلسه هشتم: پیادهسازی شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679
🔸 جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687
🔹 جلسه دهم: پیادهسازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694
✅ جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
#پروژه_محور
از #پروژه های انجام شده و #مقالات پیاده سازی شده در این دوره میتوانید در پروژه های درسی و #پایان_نامه خود استفاده کنید👌
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Telegram
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
#پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
2⃣جلسه دوم: پیادهسازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
#پرسپترون_تک_لایه ، #پرسپترون #ماکزیمم_شباهت ، #داده_خطی ، #کلاسبندی…
سوال و جواب
دوره های onlinebme تنها یک دوره آموزشی نیستند
در هر دوره مقالات تخصصی پیاده سازی میشه و چندین پروژه عملی در دوره انجام میشه که از #پروژه ها و #مقالات پیاده سازی شده میتوانید در #پروژه_های_درسی و #پایان_نامه خودتون استفاده کنین😊👌
بعد از دوره هم بالطبع در کارهای خودتون ممکنه سوالی داشته باشین که مدرس دوره به صورت #رایگان #پشتیبانی میکنه😊
@onlinebme
دوره های onlinebme تنها یک دوره آموزشی نیستند
در هر دوره مقالات تخصصی پیاده سازی میشه و چندین پروژه عملی در دوره انجام میشه که از #پروژه ها و #مقالات پیاده سازی شده میتوانید در #پروژه_های_درسی و #پایان_نامه خودتون استفاده کنین😊👌
بعد از دوره هم بالطبع در کارهای خودتون ممکنه سوالی داشته باشین که مدرس دوره به صورت #رایگان #پشتیبانی میکنه😊
@onlinebme
onlinebme
❌💢سرفصل پکیج آموزشی دورهی تخصصی پردازش سیگنال EEG مبتنی بر تسک تصور حرکتی💢❌ 🔘 واسط مغز و کامپیوتر چیست؟ 🔺انواع واسط مغز و کامپیوتر؟ 🔺کاربردهای واسط مغز کامپیوتر 🔺واسط مغز و کامپیوتر مبتنی بر EEG 🔺سیگنال EEG 🔺ریتمهای سیگنال EEG مبتنی بر تسک تصور حرکتی 🔺نواحی…
articles.zip
2.2 MB
✅ مقالات پیاده سازی شده در دوره تخصصی پردازش سیگنال eeg مبتنی بر تسک تصور حرکتی
💡همانطور که گفته ایم دوره های آموزشی ما تنها یک ویدیوی آموزشی نیستند. پکیج آموزشی علاوه بر #ویدیوهای_آموزشی، شامل #کدهای_متلب نوشته شده برای پروژه ها، #مقالات پیاده سازی شده، #داده های استفاده شده در دوره ها و #جزوه نوشته شده توسط مدرس دوره نیز است.
💯 در این دوره 4 مقاله پیاده سازی شده و روی 3 داده معروف bci competition اعمال شده اند.
💯از مقالات پیاده سازی شده و پروژه های انجام شده میتوانید در #پروژههای_درسی و #پایان_نامه خود استفاده کنید.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
💡همانطور که گفته ایم دوره های آموزشی ما تنها یک ویدیوی آموزشی نیستند. پکیج آموزشی علاوه بر #ویدیوهای_آموزشی، شامل #کدهای_متلب نوشته شده برای پروژه ها، #مقالات پیاده سازی شده، #داده های استفاده شده در دوره ها و #جزوه نوشته شده توسط مدرس دوره نیز است.
💯 در این دوره 4 مقاله پیاده سازی شده و روی 3 داده معروف bci competition اعمال شده اند.
💯از مقالات پیاده سازی شده و پروژه های انجام شده میتوانید در #پروژههای_درسی و #پایان_نامه خود استفاده کنید.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
articles.zip
2.2 MB
✅ مقالات پیاده سازی شده در دوره تخصصی پردازش سیگنال eeg مبتنی بر تسک تصور حرکتی
💡همانطور که گفته ایم دوره های آموزشی ما تنها یک ویدیوی آموزشی نیستند. پکیج آموزشی علاوه بر #ویدیوهای_آموزشی، شامل #کدهای_متلب نوشته شده برای پروژه ها، #مقالات پیاده سازی شده، #داده های استفاده شده در دوره ها و #جزوه نوشته شده توسط مدرس دوره نیز است.
💯 در این دوره 4 مقاله پیاده سازی شده و روی 3 داده معروف bci competition اعمال شده اند.
💯از مقالات پیاده سازی شده و پروژه های انجام شده میتوانید در #پروژههای_درسی و #پایان_نامه خود استفاده کنید.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
💡همانطور که گفته ایم دوره های آموزشی ما تنها یک ویدیوی آموزشی نیستند. پکیج آموزشی علاوه بر #ویدیوهای_آموزشی، شامل #کدهای_متلب نوشته شده برای پروژه ها، #مقالات پیاده سازی شده، #داده های استفاده شده در دوره ها و #جزوه نوشته شده توسط مدرس دوره نیز است.
💯 در این دوره 4 مقاله پیاده سازی شده و روی 3 داده معروف bci competition اعمال شده اند.
💯از مقالات پیاده سازی شده و پروژه های انجام شده میتوانید در #پروژههای_درسی و #پایان_نامه خود استفاده کنید.
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
❌💢 شروع ثبت نام هشتمین دوره فشرده پردازش سیگنال eeg 💢❌ ✅ در این دوره تمام اصول مورد نیاز برای پردازش سیگنال eeg از دید یادگیری ماشین و #پترن آموزش داده میشود. #سرفصل_مطالب 🔵پیش پردازش سیگنال در حوزه زمان و فرکانس جهت حذف نویز و آرتیفکت 🔴 نحوه بدست آوردن…
توضیحات تکمیلی 👇
مطالب این دوره تلفیق چندین مقاله تخصصی هست و شرکت کنندگان بعد از سپری کردن دوره #مهارت لازم جهت #پیاده_سازی #مقالات_تخصصی در این حوزه را بدست می آورند.
بعد از اتمام دوره، جهت به #چالش کشیدن مهارت شرکت کنندگان، برای هر فرد یک مقاله تخصصی میدیم که به صورت مرحله به مرحله به #کمک #مدرس دوره پیاده کنن و اگه مشکلی داشتن به صورت حضوری یا اسکایپ برطرف میکنیم.
➖➖➖➖➖➖➖➖➖
💡پیش نیاز دوره : داشتن مهارت برنامه نویسی در متلب
یک پکیج آموزشی 18 جلسه ای برای این منظور در سایت قرار گرفته است و میتوانید قبل از شرکت در دوره ویدیوهارو نگاه کنید👇👇
📺 آموزش اصول برنامهنویسی در #متلب ( #رایگان)
https://onlinebme.com/course/matlab/
➖➖➖➖➖➖➖➖➖➖
🔹اگه تا الان با حوزه یادگیری ماشین آشنا نشده اید پیشنهاد میکنیم که کلیپهای کوتاه زیر رو نگاه کنید.
https://onlinebme.com/course/machine-learning-in-matlab/
➖➖➖➖➖➖➖➖➖➖
و یا پکیج آموزشی دوره شبکه عصبی و یا یکی از فصلهای دوره یادگیری ماشین رو نگاه کنید. در اینصورت دوره خیلی میتونه براتون مفید باشه.
📺 پیاده سازی گام به گام #شبکههای_عصبی ( پروژه محور)
https://onlinebme.com/product/neural-networks-package/
📺 شناسایی الگو و یادگیری ماشین
(فعلا فصلهای 1-2-3 و بخش اول فصل 4 در سایت قرار گرفته است)
https://onlinebme.com/product/pattern-parametric-classifiers/
https://onlinebme.com/product/validation-methods-and-parameters/
➖➖➖➖➖➖➖➖
#ظرفیت دوره داره تکمیل میشه و زمانبندی بعد از تکمیل ظرفیت مشخص خواهد شد.
🏢 آکادمی انلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مطالب این دوره تلفیق چندین مقاله تخصصی هست و شرکت کنندگان بعد از سپری کردن دوره #مهارت لازم جهت #پیاده_سازی #مقالات_تخصصی در این حوزه را بدست می آورند.
بعد از اتمام دوره، جهت به #چالش کشیدن مهارت شرکت کنندگان، برای هر فرد یک مقاله تخصصی میدیم که به صورت مرحله به مرحله به #کمک #مدرس دوره پیاده کنن و اگه مشکلی داشتن به صورت حضوری یا اسکایپ برطرف میکنیم.
➖➖➖➖➖➖➖➖➖
💡پیش نیاز دوره : داشتن مهارت برنامه نویسی در متلب
یک پکیج آموزشی 18 جلسه ای برای این منظور در سایت قرار گرفته است و میتوانید قبل از شرکت در دوره ویدیوهارو نگاه کنید👇👇
📺 آموزش اصول برنامهنویسی در #متلب ( #رایگان)
https://onlinebme.com/course/matlab/
➖➖➖➖➖➖➖➖➖➖
🔹اگه تا الان با حوزه یادگیری ماشین آشنا نشده اید پیشنهاد میکنیم که کلیپهای کوتاه زیر رو نگاه کنید.
https://onlinebme.com/course/machine-learning-in-matlab/
➖➖➖➖➖➖➖➖➖➖
و یا پکیج آموزشی دوره شبکه عصبی و یا یکی از فصلهای دوره یادگیری ماشین رو نگاه کنید. در اینصورت دوره خیلی میتونه براتون مفید باشه.
📺 پیاده سازی گام به گام #شبکههای_عصبی ( پروژه محور)
https://onlinebme.com/product/neural-networks-package/
📺 شناسایی الگو و یادگیری ماشین
(فعلا فصلهای 1-2-3 و بخش اول فصل 4 در سایت قرار گرفته است)
https://onlinebme.com/product/pattern-parametric-classifiers/
https://onlinebme.com/product/validation-methods-and-parameters/
➖➖➖➖➖➖➖➖
#ظرفیت دوره داره تکمیل میشه و زمانبندی بعد از تکمیل ظرفیت مشخص خواهد شد.
🏢 آکادمی انلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
اصول پایه برنامهنویسی در متلب - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
قبل از یادگیری هر زبان برنامه نویسی لازم است که ما به سوالاتی مثل چرا و به چه دلیل باید این زبان برنامه نویسی را یاد بگیریم، جواب بدیم. باید نیاز کار را بدانیم. وقتی وارد دانشگاه می شویم، کارشناسی، کارشناسی ارشد، و دکتری همش سوالمون اینه که چی باید یاد بگیرم…
دوستان و همراهان عزیز
سلام
احتمالا خیلی از شما در جریان رویکرد و برنامه آموزشی ما هستید.
چندین دوره فعلا آماده شده است و الان هم دوره جامع "پترن و یادگیری ماشین" درحال آماده سازی است.
پنج فصل این دوره آماده شده که شامل 46 جلسه است( حدودا 90 ساعت ویدیوی آموزشی) و سه فصل آن باقی مونده که در حال آماده سازی است.
✅ دوره "پترن و یادگیری ماشین" یکی از مهمترین دوره ها است. بنابراین سعی کردم تمام مباحث پایه و اساسی رو در این دوره ارائه بدم.
یه سری دوستان درخواست کرده بودند که ضبط سایر دوره هارو استارت بزنم، مثل دوره پردازش سیگنال و پردازش تصویر. باید خدمتتون عرض کنم که این دوره ها به ترتیب ضبط خواهند شد، ولی لازمه ذکر کنم که دوره پترن و یادگیری ماشین اساس اکثر پروژه ها چه در حوزه پردازش تصویر و چه در حوزه پردازش سیگنال است. به همین دلیل سعی کردم اول دوره پترن و یادگیری ماشین رو آموزش بدم.
💡دوستانی که تمایل دارند در دوره های پیش رو بازدهی بیشتری داشته باشند پیشنهاد میکنم حتما در ابتدا دوره پترن و یادگیری ماشین رو نگاه کنند.
چون تمام #ابزار لازم جهت #پیاده_سازی #مقالات و #پروژه ها در این دوره به صورت تخصصی آموزش داده شده و درواقع مرحله ی آماده سازی شما برای پروژه ها و مقالات تخصصی در هر حوزه است.
انشاالله بعد تکمیل این دوره، دوره های #پروژه_محور و #مقاله_محور شروع خواهند شد.
که در ابتدا دوره های پردازش سیگنال مثل eeg ، ssvep p300، ECG و EMG ضبط میشن بعد دوره پردازش تصویر ضبط خواهد شد.
ممنون که همراهمون هستید🙏🌹❤️
سلام
احتمالا خیلی از شما در جریان رویکرد و برنامه آموزشی ما هستید.
چندین دوره فعلا آماده شده است و الان هم دوره جامع "پترن و یادگیری ماشین" درحال آماده سازی است.
پنج فصل این دوره آماده شده که شامل 46 جلسه است( حدودا 90 ساعت ویدیوی آموزشی) و سه فصل آن باقی مونده که در حال آماده سازی است.
✅ دوره "پترن و یادگیری ماشین" یکی از مهمترین دوره ها است. بنابراین سعی کردم تمام مباحث پایه و اساسی رو در این دوره ارائه بدم.
یه سری دوستان درخواست کرده بودند که ضبط سایر دوره هارو استارت بزنم، مثل دوره پردازش سیگنال و پردازش تصویر. باید خدمتتون عرض کنم که این دوره ها به ترتیب ضبط خواهند شد، ولی لازمه ذکر کنم که دوره پترن و یادگیری ماشین اساس اکثر پروژه ها چه در حوزه پردازش تصویر و چه در حوزه پردازش سیگنال است. به همین دلیل سعی کردم اول دوره پترن و یادگیری ماشین رو آموزش بدم.
💡دوستانی که تمایل دارند در دوره های پیش رو بازدهی بیشتری داشته باشند پیشنهاد میکنم حتما در ابتدا دوره پترن و یادگیری ماشین رو نگاه کنند.
چون تمام #ابزار لازم جهت #پیاده_سازی #مقالات و #پروژه ها در این دوره به صورت تخصصی آموزش داده شده و درواقع مرحله ی آماده سازی شما برای پروژه ها و مقالات تخصصی در هر حوزه است.
انشاالله بعد تکمیل این دوره، دوره های #پروژه_محور و #مقاله_محور شروع خواهند شد.
که در ابتدا دوره های پردازش سیگنال مثل eeg ، ssvep p300، ECG و EMG ضبط میشن بعد دوره پردازش تصویر ضبط خواهد شد.
ممنون که همراهمون هستید🙏🌹❤️
onlinebme
✅ سرفصل دوره جامع پردازش سیگنال مغزی(eeg) #اولین دوره تخصصی در ایران 1⃣ فصل اول: مقدمه 🔻 مقدمه ای بر پردازش سیگنال EEG از دید شناسایی الگو 🔺 مقدمه ای بر الکتروانسفالوگرافی(eeg) 2⃣ فصل دوم: پردازش سیگنال eeg در حوزه زمان 🔹 معرفی پایگاه داده صرع و نحوه…
در این دوره تمامی مباحث تخصصی و کاربردی پردازش سیگنال eeg از پایه و به صورت مرحله به مرحله آموزش داده شده بر روی سیگنال eeg پیاده سازی شده است.
این دوره کاملا پروژه محور هست و از همان ابتدا وارد بحثهای تخصصی شده و هر مبحثی که آموزش داده میشود، مستقیما روی سیگنال اعمال شده و نتایج به صورت عملی در پروژه ها بررسی می شود.
در این دوره پروژه های زیادی طبق مقالات تخصصی انجام شده که علاقه مندان به این حوزه، با کمک این پروژه ها و کدهای پیاده سازی شده، به راحتی میتوانند #پروژه های_تخصصی خود را جهت انجام #پروژه #پایان_نامه و نوشتن #مقالات تخصصی خود استفاده کنند و یک کار و خوب با کیفیت ارائه دهند.
تمام موارد مورد نیاز در انجام یک پروژه با کیفیت و تخصصی در این دوره طبق مقالات تخصصی آموزش داده شده است و علاقه مندان میتوانند از کدهای پیاده سازی شده در دوره استفاده کرده و پروژه های تخصصی خودشان را انجام دهند.
🔺در این دوره آموزش داده ایم که چطور میتوان از سیگنال eeg در سه حوزه مختلف زمان، فرکانس و ویولت ویژگی استخراج کرد.
🔺هر سه حوزه به طور مفصل بررسی شده و مباحث لازم جهت پردازش سیگنال در سه حوزه آموزش داده شده است. در ادامه ویژگیهای استخراج شده از سیگنال باهم ترکیب کرده ایم و سپس با کمک روشهای انتخاب ویژگی از بین ویژگیهای استخراج شده، بهترین ویژگیها رانتخاب کرد و از آنها برای طبقه بندی سیگنال eeg استفاده کرده ایم. نتایج بدست آمده نشان میدهند که رویکردهای ارائه شده همانند مقالات معتبر و حتی بهتر از آنها هستند.
در ادامه دوره برای اینکه دوستان بتوانند در پروژه های خودشان دقت کار را بیشتر هم بکنند مباحث انتخاب کانالهای و باندهای فرکانسی بهینه را طبق مقالات تخصصی آموزش داده ایم که نتایج طبقه بندی را به طور قابل توجهی افزایش میدهند.
🔹برای اینکه دوستان کار با داده های مختلف آشنا شوند در این دوره از دو پایگاه داده بسیار معروف استفاده شده است.(داده صرع بن آلمان و تصور حرکتی bci competition)
در این دوره از دو پایگاه داده استفاده شده تا دوستان هم کار با داده های مختلف آشنا شوند و همچنین بتوانند از دانش بدست آمده در دوره حوزه های مختلف استفاده کنند. نتایج بدست آمده در هر دو پایگاه داده نشانگر کیفیت و اهمیت روشهای آموزش داده شده است.
✅ تمام محتوای این دوره طبق تجربه چندین ساله ی آموزشی و پروژه ای خودم از طریق مطالعه و پیاده سازی مقالات تخصصی پردازش سیگنال مغزی(eeg) آماده شده است و تمامی مباحث بسیار کاربردی و مهم هستند. این دوره رو برای برای همه گروهایی که میخواهند به صورت تخصصی کارهای تحقیقاتی بر روی سیگنال eeg انجام دهند پیشنهاد می کنم.
این دوره برای همه دانشجویان علاقه مند به پردازش سیگنال از قبیل پزشکی، روان شناسی، علوم اعصاب، به خصوص #مهندسی_پزشکی و #هوش_مصنوعی مناسب است.
🔸این دوره بسیار جامع و کاملتر از دوره حضوری هست و این به این خاطر هست در دوره حضوری به خاطر فرصت محدودی که داشتیم نمیتوانستیم تمامی مباحث را در دوره آموزش دهیم.
در این دوره سعی شده تمامی مباحث مورد نیاز جهت پردازش تخصصی سیگنال eeg آموزش داده شود. و دوره کامل و جامعی برای شما باشد.
امیدوارم این دوره برایتان مفید باشد و بتوانید پروژه های تخصصی خودتان در این زمینه انجام دهید.
امیدوارم از مطالعه این دوره لذت ببرید.
محمد نوری زاده چرلو
⭕️جزئیات بیشتر 👇
🌀https://onlinebme.com/product/eeg-signal-processing/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
این دوره کاملا پروژه محور هست و از همان ابتدا وارد بحثهای تخصصی شده و هر مبحثی که آموزش داده میشود، مستقیما روی سیگنال اعمال شده و نتایج به صورت عملی در پروژه ها بررسی می شود.
در این دوره پروژه های زیادی طبق مقالات تخصصی انجام شده که علاقه مندان به این حوزه، با کمک این پروژه ها و کدهای پیاده سازی شده، به راحتی میتوانند #پروژه های_تخصصی خود را جهت انجام #پروژه #پایان_نامه و نوشتن #مقالات تخصصی خود استفاده کنند و یک کار و خوب با کیفیت ارائه دهند.
تمام موارد مورد نیاز در انجام یک پروژه با کیفیت و تخصصی در این دوره طبق مقالات تخصصی آموزش داده شده است و علاقه مندان میتوانند از کدهای پیاده سازی شده در دوره استفاده کرده و پروژه های تخصصی خودشان را انجام دهند.
🔺در این دوره آموزش داده ایم که چطور میتوان از سیگنال eeg در سه حوزه مختلف زمان، فرکانس و ویولت ویژگی استخراج کرد.
🔺هر سه حوزه به طور مفصل بررسی شده و مباحث لازم جهت پردازش سیگنال در سه حوزه آموزش داده شده است. در ادامه ویژگیهای استخراج شده از سیگنال باهم ترکیب کرده ایم و سپس با کمک روشهای انتخاب ویژگی از بین ویژگیهای استخراج شده، بهترین ویژگیها رانتخاب کرد و از آنها برای طبقه بندی سیگنال eeg استفاده کرده ایم. نتایج بدست آمده نشان میدهند که رویکردهای ارائه شده همانند مقالات معتبر و حتی بهتر از آنها هستند.
در ادامه دوره برای اینکه دوستان بتوانند در پروژه های خودشان دقت کار را بیشتر هم بکنند مباحث انتخاب کانالهای و باندهای فرکانسی بهینه را طبق مقالات تخصصی آموزش داده ایم که نتایج طبقه بندی را به طور قابل توجهی افزایش میدهند.
🔹برای اینکه دوستان کار با داده های مختلف آشنا شوند در این دوره از دو پایگاه داده بسیار معروف استفاده شده است.(داده صرع بن آلمان و تصور حرکتی bci competition)
در این دوره از دو پایگاه داده استفاده شده تا دوستان هم کار با داده های مختلف آشنا شوند و همچنین بتوانند از دانش بدست آمده در دوره حوزه های مختلف استفاده کنند. نتایج بدست آمده در هر دو پایگاه داده نشانگر کیفیت و اهمیت روشهای آموزش داده شده است.
✅ تمام محتوای این دوره طبق تجربه چندین ساله ی آموزشی و پروژه ای خودم از طریق مطالعه و پیاده سازی مقالات تخصصی پردازش سیگنال مغزی(eeg) آماده شده است و تمامی مباحث بسیار کاربردی و مهم هستند. این دوره رو برای برای همه گروهایی که میخواهند به صورت تخصصی کارهای تحقیقاتی بر روی سیگنال eeg انجام دهند پیشنهاد می کنم.
این دوره برای همه دانشجویان علاقه مند به پردازش سیگنال از قبیل پزشکی، روان شناسی، علوم اعصاب، به خصوص #مهندسی_پزشکی و #هوش_مصنوعی مناسب است.
🔸این دوره بسیار جامع و کاملتر از دوره حضوری هست و این به این خاطر هست در دوره حضوری به خاطر فرصت محدودی که داشتیم نمیتوانستیم تمامی مباحث را در دوره آموزش دهیم.
در این دوره سعی شده تمامی مباحث مورد نیاز جهت پردازش تخصصی سیگنال eeg آموزش داده شود. و دوره کامل و جامعی برای شما باشد.
امیدوارم این دوره برایتان مفید باشد و بتوانید پروژه های تخصصی خودتان در این زمینه انجام دهید.
امیدوارم از مطالعه این دوره لذت ببرید.
محمد نوری زاده چرلو
⭕️جزئیات بیشتر 👇
🌀https://onlinebme.com/product/eeg-signal-processing/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
پردازش سیگنال مغزی(EEG) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
در این دوره تخصصی تمامی مباحث پایه و کاربردی پردازش سیگنال eeg به صورت مرحله به مرحله آموزش داده شده بر روی سیگنال eeg پیاده سازی شده است.این دوره کاملا پروژه محور هست و از همان ابتدا وارد بحثهای تخصصی شده و هر مبحثی که آموزش داده میشود، مستقیما روی سیگنال…