onlinebme
4.82K subscribers
1.48K photos
574 videos
346 files
700 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
پردازش تصویر-سیگنالهای حیاتی
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
onlinebme
با سلام دوستان دوره تهرانمون از هفته دیگه شروع خواهد شد. قراره هفته ای دو جلسه 3-4 ساعته داشته باشیم تا قبل از امتحانات دوره هارو تموم کنیم. جزئیات دوره هارو در کانال دوم قرار میدهیم، از طریق لینک زیر میتوانید جزئیات دوره شبکه عصبی و دوره جامع مهندسی پزشکی…
با سلام
❇️ آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی قصد دارد تابستان چند #دوره در #تهران برگزار کند.
🔺 علاقه مندان جهت پیش ثبت نام به آیدی زیر مراجعه کنند:
@onlineBME_admin

1⃣ دوره تخصصی پیاده سازی #شبکه‌های_عصبی مصنوعی در متلب
✔️ تئوری پیاده سازیپروژه
#perceptron , #mlp(back propagation learning) #modifiedMLP (delta delta & delta bar learning ), #rbf , #modifiedRBF( jacopian learning)
#ELM , #PNN , #ELMAN #JORDAN , #SOM (competitive & hebbian learning)

🔺 تمام مباحث کتاب شبکه عصبی سیمون هیکن آموزش داده شده و سپس در متلب پیاده سازی میکنیم و در نهایت چندین پروژه عملی انجام میدهیم.😊

2⃣ دوره #پترن در پردازش سیگنال
در این دوره مباحث درس شناسایی الگو آموزش داده و سپس الگوریتمها در متلب پیاده سازی میکنیم.
برای اینکه با کاربرد این الگوریتمها آشنا بشیم چندین پروژه عملی طبق مقالات معتبر روی #سیگنالهای_حیاتی انجام میشود تا دوستان شرکت کننده بعد از اتمام دوره مشکلی در #شبیه_سازی_مقالات، کار با #داده های واقعی، انجام پروژه #پایان_نامه مشکلی نداشته باشند.

3⃣ پردازش تصویر
این دوره یک دوره جامع است که شامل سه بخش است:
🔹 #مقدماتی: آموزش مباحث کتاب #گونزالس
🔹 #پیشرفته1 : پردازش تصاویر پزشکی
MRI, CT, ultrasound, dinamic MRI
🔹 #پیشرفته2 : پترن در پردازش تصویر
در روزهای آینده چندتا از #پروژه هایی که در این دوره ها آموزش داده خواهند شد را به صورت ویدیو و یا عکس در کانال قرار خواهیم داد تا علاقه مندان از قبل یه دید کلی نسبت به دوره ها داشته باشند.
لازم به ذکر است که دوره ها بعد از تکمیل ظرفیت برگزار خواهند شد، لذا دوستانی که مایل به شرکت در دوره ها هستند اسم و شماره تماس خودشون رو به آیدی زیر بفرستند.
@onlineBME_admin
شماره تماس:
0936-038-2687
موفق باشید🙏🌹

#دوره_تابستانه 😊
#شبکه_عصبی
#پردازش_تصویر
#پردازش_سیگنال
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی

📖 @onlineBME
onlinebme
جزوه خام جلسه سوم شبکه عصبی.pdf
جزوه خام جلسه چهارم شبکه عصبی.pdf
2 MB
📋 #جزوه خام جلسه چهارم شبکه عصبی
☑️ شبکه عصبی #RBF (توابع شعاعی پایه )، ELM و PNN (شبکه عصبی احتمالی)
#elm
#rbf
#pnn
#پروژه_عملی
#کلاسبندی
#پیشبینی |آلودگی هوا |میزان نشست خاک در مترو
✔️ @onlineBME
📚مروری مختصر بر مباحثی که در دوره شبکه عصبی آموزش داده خواهند شد:
#perceptron
#mlp(back propagation learning)
#modifiedMLP (delta delta & delta bar learning )
#rbf
#modifiedRBF( jacopian learning)
#ELM , #PNN , #ELMAN #JORDAN ,
#SOM (competitive & hebbian learning)

✔️ تئوری پیاده سازیپروژه

⚠️ ظرفیت باقی مانده: 2 نفر

جهت ثبت‏ نام در دوره پاییز میتوانید با شماره‏ ی زیر تماس بگیرید:
0936-038-2687
@OnlineBME_Admin

✔️ @OnlineBME
onlinebme
جزوه خام دوره شبکه عصبی.pdf
This media is not supported in your browser
VIEW IN TELEGRAM
مروری مختصر بر مباحثی که در دوره ي تخصصی " پیاده سازی شبکه های عصبی در متلب" آموزش داده خواهد شد.
تئوری پیاده‌سازی پروژه عملی


مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

🔹 جهت کسب اطلاعات بیشتر به شماره و آیدی زیر پیام بدهید 👇👇
@OnlineBME_Admin
0936-038-2687
#شبکه_عصبی
#دوره
#پروژه_محور
#کلاسبندی
#پیشبینی
#خوشه_بندی
#کاهش_بعد
#مدلسازی
#استخراج_ویژگی
#تئوری #پیاده_سازی #پروژه_عملی
#mlp #perceptron #rbf #elm #pnn #som #recurrent #jordan #elman
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو "فارغ التحصیل دانشگاه علم و صنعت تهران" 9⃣ جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM ) #پیاده‌سازی_مقاله #پروژه_عملی #رگرسیون #طبقه‌بندی #کلاسبندی #روشهای_ارزیابی…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

9⃣ جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )

ما تا جلسه هشتم از مباحث #کتاب معروف   Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیاده‌سازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیاده‌سازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده می‌کند و این باعث می‎شود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث می‌شود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار ساده‌ای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم می‌‌کند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص می‌دهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه می‌کند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.

🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیاده‌سازی کرده‌ایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقه‌بندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام داده‌ایم.

🔘 ما تا این جلسه برای #ارزیابی شبکه‌های عصبی از روش معمول (the hold out validation method) استفاده می‌کردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست می‌شود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی 
k-fold cross validation، 
random subsampling 
leave one out validation 
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کرده‌ایم و درنهایت پروژه‌های عملی را با استفاده از این روشها ارزیابی می‌کنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.

🔺نکته: مباحث ‌این جلسه طبق مطالب مقاله پیوست می‌باشد.

 
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇

https://onlinebme.com/product/elm-neural-networks/

💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN) #پیاده‌سازی_مقاله #پروژه_عملی #طبقه‌بندی #کلاسبندی 🏢 آکادمی آنلاین…
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)

در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را طبق دو #مقاله تخصصی آموزش می‌دهیم تا با پیاده‌سازی مقالات تخصصی نیز آشنا شوید. این شبکه از لحاظ تصمیم‌گیری شباهت زیادی با کلاسبند #بیزین دارد و همین باعث شده عملکرد طبقه‌بندی بالایی داشته باشد و در عمل خیلی از این شبکه عصبی استفاده کنند. همانطور که می‌دانید طبقه‌بند بیزین اگر تمام شرایطی که نیاز دارد فراهم شود #بهینه‌ترین طبقه‌بند بین تمام طبقه‌بندها خواهد بود. ولی از آنجا که در عمل نمی‌توان تمام شرایط را فراهم کرد در نتیجه عملکرد بهینه‌ای ندارد. شبکه عصبی PNN  از چهار لایه input layer, pattern layer, summation layer  و output layer تشکیل شده است و از یک ایده بسیار جالبی برای کلاسبندی استفاده می کند. #تئوری یادگیری این شبکه عصبی را طبق دو مقاله تخصصی ضمیمه شده در پیوست،  به زبان ساده توضیح داده و سپس در متلب #مرحله_به_مرحله پیاده سازی می کنیم. و برای اینکه با کارایی خوب این شبکه آشنا شوید دو پروژه تخصصی تشخیص سرطان سینه  و کلاسبندی داده سه کلاسهiris (گل زنبق) با استفاده از شبکه عصبی PNN انجام داده‌ایم. و در آخر #مزایا_و_معایب هر روش را با مثال عملی توضیح داده ایم.

🔺نکته: مباحث ‌این جلسه طبق مطالب مقالات پیوست می‌باشد.

 
💡 جهت خرید جلسه دهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/pnn-neural-network/

💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
onlinebme
📺 دوره تخصصی پیاده سازی شبکه‌های عصبی در متلب مدرس: محمد نوری زاده چرلو فارغ التحصیل دانشگاه علم و صنعت تهران جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN) در این جلسه نیز همانند جلسه نهم یک شبکه عصبی معروف به اسم PNN را…
جزوه خام جلسه10-شبکه عصبی PNN.pdf
1.6 MB
📋 #جزوه_خام جلسه دهم:
پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)


💡دوستانی که ویدیوهارو تهیه کرده اند میتوانند قبل از مشاهده ویدیوی هر جلسه از جزوه خام پرینت گرفته و همراه با مدرس نکات مهم رو یادداشت کنند.

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
📺 دوره #تخصصی پیاده سازی شبکه‌های عصبی در متلب
❇️ #اولین دوره ای که در آن شبکه های عصبی را به صورت تخصصی آموزش داده می‌شوند!
🔺#تئوری
🔺 #پیاده‌سازی #مرحله_به_مرحله
🔺انجام #پروژه‌های_عملی

ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتری و راحتری با آن برقرارکنه😉

👨‍💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

🔹 جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633

🔸 جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637

🔹 جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638

🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645

🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651

🔹جلسه ششم: پیاده‌سازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661

🔸 جلسه هفتم: پیاده‌سازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664

🔹 جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679

🔸 جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687

🔹 جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694

💡جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
💡 اول ترم را با یادگیری شبکه‌های عصبی شروع کنیم 😊

📺 دوره #تخصصی پیاده سازی گام به گام شبکه‌های عصبی در متلب

🔴 #اولین دوره ای که در آن شبکه های عصبی به صورت #گام_به_گام پیاده سازی شده و روی پروژه های عملی اعمال میشوند👌

🔺#تئوری
🔺 #پیاده‌سازی #گام_به_گام
🔺انجام #پروژه‌های_عملی

ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتر و راحتری با آن برقرارکنه😉

👨‍💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

🔹 جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633

🔸 جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637

🔹 جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638

🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645

🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651

🔹جلسه ششم: پیاده‌سازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661

🔸 جلسه هفتم: پیاده‌سازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664

🔹 جلسه هشتم: پیاده‌سازی شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679

🔸 جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687

🔹 جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694

جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

#پروژه_محور
از #پروژه های انجام شده و #مقالات پیاده سازی شده در این دوره میتوانید در پروژه های درسی و #پایان_نامه خود استفاده کنید👌

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
📺 دوره #تخصصی پیاده سازی شبکه‌های عصبی در متلب
❇️ #اولین دوره ای که در آن شبکه های عصبی را به صورت تخصصی آموزش داده می‌شوند!
🔺#تئوری
🔺 #پیاده‌سازی #مرحله_به_مرحله
🔺انجام #پروژه‌های_عملی

ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتری و راحتری با آن برقرارکنه😉

👨‍💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

🔹 جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633

🔸 جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637

🔹 جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638

🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645

🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651

🔹جلسه ششم: پیاده‌سازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661

🔸 جلسه هفتم: پیاده‌سازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664

🔹 جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679

🔸 جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687

🔹 جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694

💡جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
📺 دوره #تخصصی پیاده سازی شبکه‌های عصبی در متلب
❇️ #اولین دوره ای که در آن شبکه های عصبی را به صورت تخصصی آموزش داده می‌شوند!
🔺#تئوری
🔺 #پیاده‌سازی #مرحله_به_مرحله
🔺انجام #پروژه‌های_عملی

ویدیوها طوری #تدوین شده اند که کاربر ارتباط بهتری و راحتری با آن برقرارکنه😉

👨‍💻 مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران

🔹 جلسه اول: مقدمه‌ای بر شبکه‌ی عصبی (#نورون و اجزای تشکیل دهنده آن)
🌀https://t.me/onlinebme/2633

🔸 جلسه دوم: پیاده‌سازی شبکه عصبی #پرسپترون_تک_لایه با قانون یادگیری پرسپترون
🌀https://t.me/onlinebme/2637

🔹 جلسه سوم: قانون یادگیری #LMS و پیاده‌سازی شبکه عصبی #آدالاین و انجام پروژه عملی تشخیص سرطان سینه
🌀https://t.me/onlinebme/2638

🔸 جلسه سوم( بخش دوم ): انجام پروژه های عملی با استفاده از شبکه های عصبی (ناحیه بندی تصویر )
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم(بخش اول): پیاده سازی گام به گام شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2642

🔹جلسه چهارم( بخش دوم ): پیاده سازی گام به گام پروژه پیش بینی میزان آلودگی هوا با استفاده از شبکه عصبی پرسپترون چندلایه با قانون یادگیری پس انتشار خطا در متلب
🌀https://t.me/onlinebme/2645

🔸جلسه پنجم: نحوه تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش اول)
🌀https://t.me/onlinebme/2651

🔹جلسه ششم: پیاده‌سازی الگوریتم یادگیری #دلتا_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش دوم)
🌀https://t.me/onlinebme/2661

🔸 جلسه هفتم: پیاده‌سازی الگوریتم یادگیری #دلتا_بار_دلتا برای تعیین نرخ یادگیری در قانون یادگیری پس انتشار خطا (بخش سوم)
🌀https://t.me/onlinebme/2664

🔹 جلسه هشتم: پیاده‌سازی الگوریتم شبکه عصبی توابع شعاعی پایه(#RBF)
🌀https://t.me/onlinebme/2679

🔸 جلسه نهم: پیاده‌سازی شبکه عصبی Extreme Learning Machine ( #ELM )
🌀https://t.me/onlinebme/2687

🔹 جلسه دهم: پیاده‌سازی شبکه عصبی احتمالیProbabilistic Neural Network ( #PNN)
🌀https://t.me/onlinebme/2694

💡جهت تهیه پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme