✅ مشکلات پزشکان – نقش مهندسین
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
به خاطر درخواست مکرر اعضای کانال، قصد داریم روشهای تصویربرداری پزشکی را دوباره به طور مختصر توضیح دهیم. اما لازم است در ابتدا یک سری نکاتی رو ذکر کنیم.
✍️ از آنجا که اکثر ما (مهندسین پزشکی- برق- هوش مصنوعی) برای پایان نامه روی تصاویر پزشکی کار می کنیم و همیشه دغدغه پیدا کردن #داده داریم، در زیر به این موضوع و مشکلاتی که داریم می پردازیم:
روشهای تصویربرداری مختلفی از جمله، اولتراسوند، mri، pet و ... وجود دارند که جهت تشیخص بیماری در بیمارستان ها استفاده می شوند و پزشکان با تجزیه و تحلیل این تصاویر، بیماری فرد را تشیخص می دهند. اما از آنجا که روشهای #دستی به #هزینه و #زمان بالایی نیاز دارند و از آنجایی که تخمینهای مربوط به هر کاربر با کاربر دیگر #متفاوت است، قابلیت #اطمینان پایینی دارند، لازم است که روشهای خودکار و کامپیوتری جهت محاسبه یک سری پارامترها استفاده شود. اهمیت بالای تشخیص بیماری باعث شده محققین زیادی در حوزه #مهندسی علاقه مند به فعالیت در این حوزه پزشکی شوند و به پزشکان در تجزیه و تحلیل تصاویر کمک کنند.
پزشکان معمولا به چند دلیل در تشخیص بیماری به #مشکل میخورند که چهار مورد آنرا توضیح میدهیم:
1- زمان کافی برای تحلیل تمام تصاویر ندارند یا اینطور بگیم که تعداد تصاویر بسیار بالاست و بررسی همه این تصاویر توسط پزشک واقعا #زما_بر است.
برای تشخیص بیماری لازم است پزشکان یک سری پارامترها از روی تصاویر اندازه گیری کنند و طبق اندازه گیریها تصمیم گیری کنند. برای مثال برای تشخیص بیماری های #قلبی لازم است که پزشک از روی تصاویر #نسبت_برون_ده قلبی، حجم بطن چپ، ضحامت دیواره و .... را محاسبه کنند. در پست بعد به طور مفصل در #اکوکاردیوگرافی صحبت خواهیم کرد.
محاسبه این پارامترها توسط پزشک بسیار زمان بر است و عملا سرعت تصمیم گیری و بعضی مواقع دقت تصمیم گیری را پایین می آورد.
2- ممکن است بعضی تصاویر اطلاعات #کافی در مورد بیماری نشان ندهند و تنها با استفاده از یک نوع تصویر(مثلا mri) پزشک نتواند یک بیماری تشخیص دهند.
برای مثال بعضی از روشهای تصویربرداری مثل MRI تنها اطلاعات ساختاری اندامها را در اختیار پزشک قرار میدهند و یا بعضی از روشهای تصویربردای مثل pet تنها اطلاعات عملکردی اندامها را در اختیار پزشک قرار می دهند. اما پزشک برای تشخیص درست به هر دو تصویر به صورت همزمان نیاز دارد!
3- ممکن است تصاویر نویزی باشند و تشخیص بیماری توسط پزشک را سخت کنند
4- ممکن است تشخیص بیماری با چشم غیرمسلح از روی تصاویر ممکن نباشد.
✅ اینجاست که #نقش مهندسین #پررنگ_تر میشود. 👌
🔺برای رفع مشکل اول مهندسین با استفاده از دانش پردازش تصویر، محاسبه پارامترها را به صورت #خودکار انجام میدهند. معمولا به صورت زمان حقیقی پارمترها محاسبه می شوند و پزشک با استفاده از این پارامترها بیماری را سریع تشخیص می دهد و با اینکار ممکن است از یک خطر بزرگ جلوگیری شود و سریع روند درمان شروع شود!
🔺 برای رفع مشکل دوم مهندسین از روشهای انطباق و ادغام تصاویر استفاده می کنند(قبلا این روشها توضییح داده شده است. از هشتکهای قرار داده شده استفاده کنید و مطالب را مطالعه کنید).
ادغام تصاویر، به معنای ترکیب دو یا چند تصویر و به دست آوردن یک تصویر نهایی، با هدف تجمیع اطلاعات مفید در تصویر نهایی، میباشد.
🔺برای رفع مشکل سوم دو راه وجود دارد، یکی اینکه سیستم تصویربرداری را بهبود بدهند، اما از آنجا که هزینه دستگاهها بالاست نمیتوان اینکار را انجام داد. راه دوم اینکه از روشهای پردازش تصویر جهت کاهش نویز استفاده کنیم. یعنی بعد از اینکه تصاویر توسط دستگاههای تصویربرداری گرفته شد، توسط مهندسین نویز تصاویر کاهش یابد تا پزشک بتواند با دقت بالاتری بیماری را تشخیص دهد.
🔺تصاویری وجود دارند که در حوزه زمان(مکان) اطلاعاتی را در مورد بیماری نشان نمیدهند، یعنی نمیتوان با چشم غیرمسلح چنین ویژگی های را مشاهده کرد، ولی وقتی این تصاویر توسط الگورتیمهای پردازش تصاویر به حوزه فرکانس یا زمان-فرکانس انتقال داده میشود اطلاعات مفیدی درباره تصویر میتوان مشاهده کرد که راهکار برای حل مشکل چهارم است.
◀️ پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
به خاطر درخواست مکرر اعضای کانال، قصد داریم روشهای تصویربرداری پزشکی را دوباره به طور مختصر توضیح دهیم. اما لازم است در ابتدا یک سری نکاتی رو ذکر کنیم.
✍️ از آنجا که اکثر ما (مهندسین پزشکی- برق- هوش مصنوعی) برای پایان نامه روی تصاویر پزشکی کار می کنیم و همیشه دغدغه پیدا کردن #داده داریم، در زیر به این موضوع و مشکلاتی که داریم می پردازیم:
روشهای تصویربرداری مختلفی از جمله، اولتراسوند، mri، pet و ... وجود دارند که جهت تشیخص بیماری در بیمارستان ها استفاده می شوند و پزشکان با تجزیه و تحلیل این تصاویر، بیماری فرد را تشیخص می دهند. اما از آنجا که روشهای #دستی به #هزینه و #زمان بالایی نیاز دارند و از آنجایی که تخمینهای مربوط به هر کاربر با کاربر دیگر #متفاوت است، قابلیت #اطمینان پایینی دارند، لازم است که روشهای خودکار و کامپیوتری جهت محاسبه یک سری پارامترها استفاده شود. اهمیت بالای تشخیص بیماری باعث شده محققین زیادی در حوزه #مهندسی علاقه مند به فعالیت در این حوزه پزشکی شوند و به پزشکان در تجزیه و تحلیل تصاویر کمک کنند.
پزشکان معمولا به چند دلیل در تشخیص بیماری به #مشکل میخورند که چهار مورد آنرا توضیح میدهیم:
1- زمان کافی برای تحلیل تمام تصاویر ندارند یا اینطور بگیم که تعداد تصاویر بسیار بالاست و بررسی همه این تصاویر توسط پزشک واقعا #زما_بر است.
برای تشخیص بیماری لازم است پزشکان یک سری پارامترها از روی تصاویر اندازه گیری کنند و طبق اندازه گیریها تصمیم گیری کنند. برای مثال برای تشخیص بیماری های #قلبی لازم است که پزشک از روی تصاویر #نسبت_برون_ده قلبی، حجم بطن چپ، ضحامت دیواره و .... را محاسبه کنند. در پست بعد به طور مفصل در #اکوکاردیوگرافی صحبت خواهیم کرد.
محاسبه این پارامترها توسط پزشک بسیار زمان بر است و عملا سرعت تصمیم گیری و بعضی مواقع دقت تصمیم گیری را پایین می آورد.
2- ممکن است بعضی تصاویر اطلاعات #کافی در مورد بیماری نشان ندهند و تنها با استفاده از یک نوع تصویر(مثلا mri) پزشک نتواند یک بیماری تشخیص دهند.
برای مثال بعضی از روشهای تصویربرداری مثل MRI تنها اطلاعات ساختاری اندامها را در اختیار پزشک قرار میدهند و یا بعضی از روشهای تصویربردای مثل pet تنها اطلاعات عملکردی اندامها را در اختیار پزشک قرار می دهند. اما پزشک برای تشخیص درست به هر دو تصویر به صورت همزمان نیاز دارد!
3- ممکن است تصاویر نویزی باشند و تشخیص بیماری توسط پزشک را سخت کنند
4- ممکن است تشخیص بیماری با چشم غیرمسلح از روی تصاویر ممکن نباشد.
✅ اینجاست که #نقش مهندسین #پررنگ_تر میشود. 👌
🔺برای رفع مشکل اول مهندسین با استفاده از دانش پردازش تصویر، محاسبه پارامترها را به صورت #خودکار انجام میدهند. معمولا به صورت زمان حقیقی پارمترها محاسبه می شوند و پزشک با استفاده از این پارامترها بیماری را سریع تشخیص می دهد و با اینکار ممکن است از یک خطر بزرگ جلوگیری شود و سریع روند درمان شروع شود!
🔺 برای رفع مشکل دوم مهندسین از روشهای انطباق و ادغام تصاویر استفاده می کنند(قبلا این روشها توضییح داده شده است. از هشتکهای قرار داده شده استفاده کنید و مطالب را مطالعه کنید).
ادغام تصاویر، به معنای ترکیب دو یا چند تصویر و به دست آوردن یک تصویر نهایی، با هدف تجمیع اطلاعات مفید در تصویر نهایی، میباشد.
🔺برای رفع مشکل سوم دو راه وجود دارد، یکی اینکه سیستم تصویربرداری را بهبود بدهند، اما از آنجا که هزینه دستگاهها بالاست نمیتوان اینکار را انجام داد. راه دوم اینکه از روشهای پردازش تصویر جهت کاهش نویز استفاده کنیم. یعنی بعد از اینکه تصاویر توسط دستگاههای تصویربرداری گرفته شد، توسط مهندسین نویز تصاویر کاهش یابد تا پزشک بتواند با دقت بالاتری بیماری را تشخیص دهد.
🔺تصاویری وجود دارند که در حوزه زمان(مکان) اطلاعاتی را در مورد بیماری نشان نمیدهند، یعنی نمیتوان با چشم غیرمسلح چنین ویژگی های را مشاهده کرد، ولی وقتی این تصاویر توسط الگورتیمهای پردازش تصاویر به حوزه فرکانس یا زمان-فرکانس انتقال داده میشود اطلاعات مفیدی درباره تصویر میتوان مشاهده کرد که راهکار برای حل مشکل چهارم است.
◀️ پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت