#تست_اعصاب
شدت حرکت مربع داخل شکل به قدرت اعصاب شما بستگی دارد !
((هر چقدر اعصاب شما قویتر باشد،حرکت مربع کند و آرامتر است))
👇👇👇👇👇
@IUST_Bioelecteric
شدت حرکت مربع داخل شکل به قدرت اعصاب شما بستگی دارد !
((هر چقدر اعصاب شما قویتر باشد،حرکت مربع کند و آرامتر است))
👇👇👇👇👇
@IUST_Bioelecteric
onlinebme
آینده هوش مصنوعی؟! امروزه افراد زیادی درباره اهمیت هوش مصنوعی اظهار نظر می کنند که برخی از آنها در این پست گذاشته شده است: ولادمیر پوتین رئیسجمهور روسیه : در آینده کشوری رهبری دنیا را در دست می گیرد که در زمینه #هوش_مصنوعی برتر از بقیه باشد، تولید هوش مصنوعی…
تعاریف مختلف از #هوش_مصنوعی:
هوش مصنوعی یا هوش ماشینی ( Artificial Intelligence) :
هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان میدهد، گفته میشود. بیشتر نوشتهها و مقالههای مربوط به هوش مصنوعی، آن را به عنوان «دانش شناخت و طراحی عاملهای هوشمند» تعریف کردهاند.
#عامل_هوشمند:
سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را پس از تحلیل و بررسی افزایش میدهد.
#جان_مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشینهای هوشمند» تعریف کرده است. تحقیقات و جستجوهایی انجام شده برای رسیدن به ساخت چنین ماشینهایی با بسیاری از رشتههای علمی در ارتباط و همکاری است، مانند علوم رایانه، روانشناسی، فلسفه، عصبشناسی، علوم ادراکی، تئوری کنترل، احتمالات، بهینهسازی و منطق.
هوش مصنوعی، شاخهایست از علم كامپیوتر كه ملزومات محاسباتی اعمالی همچون ادراك (Perception)، استدلال(reasoning) و یادگیری(learning) را بررسی كرده و سیستمی جهت انجام چنین اعمالی ارائه میدهد.
هوش مصنوعی، مطالعه روشهایی است برای تبدیل كامپیوتر به ماشینی كه بتواند اعمال انجام شده توسط انسان را انجام دهد.
تاریخ هوش مصنوعی
هوش مصنوعی به خودی خود علمی است كاملاً جوان. در واقع بسیاری شروع هوش مصنوعی را 1950 می دانند زمانی كه آلن #تورینگ مقاله دورانساز خود را در باب چگونگی ساخت ماشین هوشمند نوشت (آنچه بعدها به تست تورینگ مشهور شد) تورینگ درآن مقاله یك روش را برای تشخیص هوشمندی پیشنهاد میكرد. این روش بیشتر به یك بازی شبیه بود.
فرض كنید شما در یك سمت یك #دیوار (پرده یا هر مانع دیگر) هستید و به صورت تله تایپ باآن سوی دیوار ارتباط دارید و شخصی از آن سوی دیوار از این طریق با شما در تماس است. طبیعتاً یك مكالمه بین شما و شخص آن سوی دیوار میتواند صورت پذیرد. حال اگر پس از پایان این مكالمه، به شما گفته شود كه آن سوی دیوار نه یك شخص بلكه (شما كاملاً از #هویت شخص آن سوی دیوار بیخبرید) یك ماشین بوده كه پاسخ شما را میداده، آن ماشین یك ماشین هوشمند خواهد بود، در غیر این صورت(یعنی در صورتی كه شما در وسط مكالمه به مصنوعی بودن پاسخ پی ببرید) ماشین آن سوی دیوار #هوشمند نیست و موفق به گذراندن #تست_تورینگ نشده است. باید دقت كرد كه تورینگ به دو دلیل كاملاً مهم این نوع از ارتباط(ارتباط متنی به جای صوت) را انتخاب كرد. اول این كه موضوع ادراكی صوت را كاملاً از صورت مساُله حذف كند و این تست هوشمندی را درگیر مباحث مربوط به دریافت و پردازش صوت نكند و دوم این كه بر جهت دیگری هوش مصنوعی به سمت نوعی از پردازش زبان طبیعی تاكید كند.
در هر حال هر چند تاكنون تلاشهای متعددی در جهت پیاده سازی تست تورینگ صورت گرفته مانند برنامه Eliza و یا AIML (زبانی برای نوشتن برنامههایی كه قادر به chat كردن اتوماتیك باشند) اما هنوز #هیچ ماشینی #موفق به گذر از چنین تستی نشده است.😐
➖➖➖➖➖
@IUST_Bioelecteric
هوش مصنوعی یا هوش ماشینی ( Artificial Intelligence) :
هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان میدهد، گفته میشود. بیشتر نوشتهها و مقالههای مربوط به هوش مصنوعی، آن را به عنوان «دانش شناخت و طراحی عاملهای هوشمند» تعریف کردهاند.
#عامل_هوشمند:
سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را پس از تحلیل و بررسی افزایش میدهد.
#جان_مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشینهای هوشمند» تعریف کرده است. تحقیقات و جستجوهایی انجام شده برای رسیدن به ساخت چنین ماشینهایی با بسیاری از رشتههای علمی در ارتباط و همکاری است، مانند علوم رایانه، روانشناسی، فلسفه، عصبشناسی، علوم ادراکی، تئوری کنترل، احتمالات، بهینهسازی و منطق.
هوش مصنوعی، شاخهایست از علم كامپیوتر كه ملزومات محاسباتی اعمالی همچون ادراك (Perception)، استدلال(reasoning) و یادگیری(learning) را بررسی كرده و سیستمی جهت انجام چنین اعمالی ارائه میدهد.
هوش مصنوعی، مطالعه روشهایی است برای تبدیل كامپیوتر به ماشینی كه بتواند اعمال انجام شده توسط انسان را انجام دهد.
تاریخ هوش مصنوعی
هوش مصنوعی به خودی خود علمی است كاملاً جوان. در واقع بسیاری شروع هوش مصنوعی را 1950 می دانند زمانی كه آلن #تورینگ مقاله دورانساز خود را در باب چگونگی ساخت ماشین هوشمند نوشت (آنچه بعدها به تست تورینگ مشهور شد) تورینگ درآن مقاله یك روش را برای تشخیص هوشمندی پیشنهاد میكرد. این روش بیشتر به یك بازی شبیه بود.
فرض كنید شما در یك سمت یك #دیوار (پرده یا هر مانع دیگر) هستید و به صورت تله تایپ باآن سوی دیوار ارتباط دارید و شخصی از آن سوی دیوار از این طریق با شما در تماس است. طبیعتاً یك مكالمه بین شما و شخص آن سوی دیوار میتواند صورت پذیرد. حال اگر پس از پایان این مكالمه، به شما گفته شود كه آن سوی دیوار نه یك شخص بلكه (شما كاملاً از #هویت شخص آن سوی دیوار بیخبرید) یك ماشین بوده كه پاسخ شما را میداده، آن ماشین یك ماشین هوشمند خواهد بود، در غیر این صورت(یعنی در صورتی كه شما در وسط مكالمه به مصنوعی بودن پاسخ پی ببرید) ماشین آن سوی دیوار #هوشمند نیست و موفق به گذراندن #تست_تورینگ نشده است. باید دقت كرد كه تورینگ به دو دلیل كاملاً مهم این نوع از ارتباط(ارتباط متنی به جای صوت) را انتخاب كرد. اول این كه موضوع ادراكی صوت را كاملاً از صورت مساُله حذف كند و این تست هوشمندی را درگیر مباحث مربوط به دریافت و پردازش صوت نكند و دوم این كه بر جهت دیگری هوش مصنوعی به سمت نوعی از پردازش زبان طبیعی تاكید كند.
در هر حال هر چند تاكنون تلاشهای متعددی در جهت پیاده سازی تست تورینگ صورت گرفته مانند برنامه Eliza و یا AIML (زبانی برای نوشتن برنامههایی كه قادر به chat كردن اتوماتیك باشند) اما هنوز #هیچ ماشینی #موفق به گذر از چنین تستی نشده است.😐
➖➖➖➖➖
@IUST_Bioelecteric
onlinebme
ezgif.com_gif_maker__1_.0.gif
✅ تشخیص تصاویر فوتوشاپ شده توسط #هوش_مصنوعی و #یادگیری_ماشین
شرکت Adobe
✍ بسیاری از کارشناسان جهان به طور فزاینده ای نگران ابزارهای جدید AI هستند.
ابزاری که ویرایش تصویر و فیلم رو بسیار راحت کرده است و از طرفی استفاده گسترده مردم ازفضای مجازی باعث شده که تصاویر تکان دهنده ی جعلی بدون هیچ بررسی به اشتراک گذاشته شوند!
برخی از این ابزار توسط خود شرکت Adobe توسعه پیدا کرده اند!
اما کنار این ابزار، جدیدا شرکت Adobe درباره نحوه استفاده از یادگیری ماشین برای تشخیص خودکار تصاویر جعلی تحقیقات انجام می دهد.
آخرین کار این شرکت در کنفرانس بینایی ماشین CVPR ارائه شد که نشان میدهد چطور میشه بررسی هایی که یک شخص روی تصاویر انجام میدهد را با یادگیری ماشین با زمان کمتری انجام داد و تصاویر جعلی را تشخیص داد.
مقاله ارائه شده نشان دهنده یک پیشرفت شگرف نیست که بتوان به صورت یک محصول تجاری بهش دسترسی پیدا کرد. ولی جالبه که شرکت Adobe علاقه خود را به این حوزه نشان داده است.
منبع:
https://www.theverge.com/2018/6/22/17487764/adobe-photoshopped-fakes-edit-spotted-using-machine-learning-ai
پ.ن: تصویر معروف ویرایش شده(جعلی) که دولت #ایران بعد از آزمایش موشکهای خود در سال 2008 منتشر کرد.
(این تصویر در تحقیقات adobe جزء تصاویر #آموزش و یا #تست نبوده است )
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
📖 @onlineBME
شرکت Adobe
✍ بسیاری از کارشناسان جهان به طور فزاینده ای نگران ابزارهای جدید AI هستند.
ابزاری که ویرایش تصویر و فیلم رو بسیار راحت کرده است و از طرفی استفاده گسترده مردم ازفضای مجازی باعث شده که تصاویر تکان دهنده ی جعلی بدون هیچ بررسی به اشتراک گذاشته شوند!
برخی از این ابزار توسط خود شرکت Adobe توسعه پیدا کرده اند!
اما کنار این ابزار، جدیدا شرکت Adobe درباره نحوه استفاده از یادگیری ماشین برای تشخیص خودکار تصاویر جعلی تحقیقات انجام می دهد.
آخرین کار این شرکت در کنفرانس بینایی ماشین CVPR ارائه شد که نشان میدهد چطور میشه بررسی هایی که یک شخص روی تصاویر انجام میدهد را با یادگیری ماشین با زمان کمتری انجام داد و تصاویر جعلی را تشخیص داد.
مقاله ارائه شده نشان دهنده یک پیشرفت شگرف نیست که بتوان به صورت یک محصول تجاری بهش دسترسی پیدا کرد. ولی جالبه که شرکت Adobe علاقه خود را به این حوزه نشان داده است.
منبع:
https://www.theverge.com/2018/6/22/17487764/adobe-photoshopped-fakes-edit-spotted-using-machine-learning-ai
پ.ن: تصویر معروف ویرایش شده(جعلی) که دولت #ایران بعد از آزمایش موشکهای خود در سال 2008 منتشر کرد.
(این تصویر در تحقیقات adobe جزء تصاویر #آموزش و یا #تست نبوده است )
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
➖➖➖➖
📖 @onlineBME
The Verge
Adobe is using machine learning to make it easier to spot Photoshopped images
Using AI to spot Photoshopped images
onlinebme
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب مدرس: محمد نوری زاده چرلو "فارغ التحصیل دانشگاه علم و صنعت تهران" 9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM ) #پیادهسازی_مقاله #پروژه_عملی #رگرسیون #طبقهبندی #کلاسبندی #روشهای_ارزیابی…
📺 دوره تخصصی پیاده سازی شبکههای عصبی در متلب
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
ما تا جلسه هشتم از مباحث #کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیادهسازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده میکند و این باعث میشود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث میشود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار سادهای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم میکند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص میدهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه میکند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.
🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیادهسازی کردهایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام دادهایم.
🔘 ما تا این جلسه برای #ارزیابی شبکههای عصبی از روش معمول (the hold out validation method) استفاده میکردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست میشود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی
k-fold cross validation،
random subsampling
leave one out validation
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کردهایم و درنهایت پروژههای عملی را با استفاده از این روشها ارزیابی میکنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.
🔺نکته: مباحث این جلسه طبق مطالب مقاله پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/elm-neural-networks/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
مدرس: محمد نوری زاده چرلو
فارغ التحصیل دانشگاه علم و صنعت تهران
9⃣ جلسه نهم: پیادهسازی شبکه عصبی Extreme Learning Machine ( #ELM )
ما تا جلسه هشتم از مباحث #کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم #پیادهسازی دو تا شبکه عصبی معروف #ELM و #PNN را طبق #مقالات_تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی #پرسپترون_چندلایه دو ایراد اساسی در زمان آموزش دارد: ایراد اول شبکه این است که از #گرادیان_نزولی برای تنظیم وزنها استفاده میکند و این باعث میشود که پروسه آموزش زمانبر باشد، مخصوصا زمانی که حجم داده آموزشی زیاد باشد! ایراد دوم این شبکه تعداد زیاد #پارامترها است. در این شبکه پارامترهای زیادی باید در پروسه آموزش تنظیم شوند و همین باعث میشود که زمان آموزش بسیار بالا باشد. شبکه عصبی ELM یک رویکرد بسیار سادهای و در عین حال جالب برای حل این مسئله ارائه کرده است و به همین دلیل #سرعت_یادگیری بسیار بالایی دارد و سرعت یادگیری آن در مقایسه با #MLP شاید بتواند گفت 1000 برابر و حتی بیشتر شده است. این شبکه ساختاری همانند #RBF دارد ولی کلا یک پارامتر در طول آموزش تنظیم میکند. برخلاف RBF که وزنهای سیناپسی بین لایه ورودی و لایه پنهان ثابت و مقدار یک بود، در این شبکه لایه ورودی با یک سری وزن به لایه پنهان وصل شده شده است، البته خوبی #ماجرا اینجا هست که در این شبکه به وزنها یک مقدار #تصادفی در همان ابتدا اختصاص میدهند و نیازی نیست در طول آموزش تنظیم شوند. نورونهای لایه پنهان یک نورون معمولی هستند و نیازی به پیدا کردن مراکز و سیگمای هر نورون نیست و در نهایت تنها پارامتر قابل تنظیم این شبکه وزنهای سیناپسی بین لایه پنهان و لایه خروجی است. ELM یک شبکه #رو_به_جلو هست و با استفاده از روش #شبه_معکوس وزنهای سیناپسی را در یک لحظه محاسبه میکند. و همین امر باعث شده سرعت یادگیری این شبکه #بسیار_بالا باشد. نکته جالب ماجرا اینجاست که عملکرد این الگوریتم بسیار بالاست و با اینکه تعداد پارامتر قابل تنظیم کمتری دارد ولی عملکرد بسیار خوبی در مقالات برای این الگوریتم گزارش شده است.
🔘 در این ویدیو ما تئوری یادگیری این شبکه را طبق مقاله #به_زبان_ساده توضیح داده و سپس به صورت #مرحله_به_مرحله در متلب پیادهسازی کردهایم. و در انتها برای اینکه با کارایی این مدل آشنا شوید چندین #پروژه_عملی از قبیل #تشخیص_سرطان_سینه (پروژه عملی طبقهبندی) ، #پیش_بینی_میزان_آلودگی_هوا (پروژه عملی رگرسیون) و کلاسبندی داده سه کلاسه iris ( #گل_زنبق ) با استفاده از شبکه عصبی ELM انجام دادهایم.
🔘 ما تا این جلسه برای #ارزیابی شبکههای عصبی از روش معمول (the hold out validation method) استفاده میکردیم که در آن یکبار داده به دو بخش #آموزش و #تست تقسیم شده و مدل یکبار آموزش و تست میشود. زمانی که تعداد داده کم باشد استفاده از این روش ارزیابی مناسب نیست و باید از روشهای استاندارد دیگری استفاده کنیم. ما در این جلسه #روشهای_ارزیابی
k-fold cross validation،
random subsampling
leave one out validation
را توضیح داده و سپس مرحله به مرحله در متلب پیاده سازی کردهایم و درنهایت پروژههای عملی را با استفاده از این روشها ارزیابی میکنیم تا با #ارزیابی_استاندارد یک مدل #یادگیری_ماشین آشنا شوید و در پروژه های خود استفاده کنید.
🔺نکته: مباحث این جلسه طبق مطالب مقاله پیوست میباشد.
➖➖➖➖➖➖➖➖➖➖➖
💡 جهت خرید جلسه نهم به لینک زیر مراجعه کنید👇👇👇
https://onlinebme.com/product/elm-neural-networks/
💡جهت تهیه کامل پکیج آموزشی شبکه عصبی به لینک زیر مراجعه کنید. 👇👇 👇👇
https://onlinebme.com/product/neural-networks-package/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
شبکه عصبی ELM (جلسه نهم) - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ما تا جلسه هشتم از مباحث کتاب معروف Simon haykin استفاده کردیم و در دو جلسه آینده قصد داریم پیادهسازی دو تا شبکه عصبی معروف ELM و PNN را طبق مقالات تخصصی آموزش دهیم تا با پیادهسازی مقالات تخصصی نیز آشنا شوید. شبکه عصبی پرسپترون دو ایراد اساسی در زمان…
تست کرونا توسط کیت خانگی در کمتر از 5 دقیقه!
با توجه به شرایط کنونی دنیا در رابطه با ویروس COVID-19 تشخیص سریع و صحیح ویروس امری مثبت در راستای جلوگیری از شیوع آن می باشد. آزمایش Abbot در رابطه با تشخیص ویروس در مدت کوتاه توانسته امری مناسب در جهت مبارزه با این ویروس باشد.
نویسنده: علیرضا جهانی
آزمایشگاه های Abbott در حال رونمایی از نوعی آزمایش کروناویروس هستند که می تواند در حدود کمتر از پنج دقیقه تشخیص دهد که آیا شخص به آن ویروس مبتلا شده است یا خیر. این دستگاه بسیار کوچک و قابل حمل است که می تواند تقریباً در هر مکانی مورد استفاده قرار گیرد.
جان فرلز ، معاون تحقیق و توسعه آزمایشات تشخیصیAbbott افزود که سازنده دستگاه های پزشکی قصد دارد از روز اول ماه آوریل، 50،000 آزمایش را در روز انجام دهد. این نوع آزمایش مولکولی، مسئولیت جستجوی قطعاتی از ژنوم ویروس کرونا را بر عهده دارد که در صورت وجود ویروس در سطوح بالا به سرعت قابل شناسایی است. وی اظهار داشت که جستجوی کامل برای رد کردن قطعی از عفونت می تواند تا مدت زمان 13 دقیقه طول بکشد
جزئیات بیشتر 👇👇
https://onlinebme.com/abbott-launches-5-minute-covid-19-test-for-use-almost-anywhere/
#خبر_خوب
#تست_کرونا
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
با توجه به شرایط کنونی دنیا در رابطه با ویروس COVID-19 تشخیص سریع و صحیح ویروس امری مثبت در راستای جلوگیری از شیوع آن می باشد. آزمایش Abbot در رابطه با تشخیص ویروس در مدت کوتاه توانسته امری مناسب در جهت مبارزه با این ویروس باشد.
نویسنده: علیرضا جهانی
آزمایشگاه های Abbott در حال رونمایی از نوعی آزمایش کروناویروس هستند که می تواند در حدود کمتر از پنج دقیقه تشخیص دهد که آیا شخص به آن ویروس مبتلا شده است یا خیر. این دستگاه بسیار کوچک و قابل حمل است که می تواند تقریباً در هر مکانی مورد استفاده قرار گیرد.
جان فرلز ، معاون تحقیق و توسعه آزمایشات تشخیصیAbbott افزود که سازنده دستگاه های پزشکی قصد دارد از روز اول ماه آوریل، 50،000 آزمایش را در روز انجام دهد. این نوع آزمایش مولکولی، مسئولیت جستجوی قطعاتی از ژنوم ویروس کرونا را بر عهده دارد که در صورت وجود ویروس در سطوح بالا به سرعت قابل شناسایی است. وی اظهار داشت که جستجوی کامل برای رد کردن قطعی از عفونت می تواند تا مدت زمان 13 دقیقه طول بکشد
جزئیات بیشتر 👇👇
https://onlinebme.com/abbott-launches-5-minute-covid-19-test-for-use-almost-anywhere/
#خبر_خوب
#تست_کرونا
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
تست کرونا توسط کیت خانگی در کمتر از 5 دقیقه! - آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
با توجه به شرایط کنونی دنیا در رابطه با ویروس COVID-19 تشخیص سریع و صحیح ویروس امری مثبت در راستای جلوگیری از شیوع آن می باشد. آزمایش Abbot در رابطه با تشخیص ویروس در مدت کوتاه توانسته امری مناسب در جهت مبارزه با این ویروس باشد.