onlinebme
ایزو-سرعت شاتر-دریچه دیافراگم.pdf
@IUST_Bioelecteric
➖➖➖➖
در #سایت زیر یک رابط گرافیکی برای درک بهتر مفهوم ایزو، دریچه دیافراگم و سرعت شاتر درست کرده اند که کاربر میتواند هر سه پارامتر (ایزو، سرعت شاتر، دریچه دیافراگرام) را تغییر داده و تاثیر آن را در تصویر حاصل مشاهده کند.
🔶 دوستان پردازش تصویری حتما امتحان کنن! جالبه😌👌👌
http://www.canonoutsideofauto.ca/play/
➖➖➖➖
در #سایت زیر یک رابط گرافیکی برای درک بهتر مفهوم ایزو، دریچه دیافراگم و سرعت شاتر درست کرده اند که کاربر میتواند هر سه پارامتر (ایزو، سرعت شاتر، دریچه دیافراگرام) را تغییر داده و تاثیر آن را در تصویر حاصل مشاهده کند.
🔶 دوستان پردازش تصویری حتما امتحان کنن! جالبه😌👌👌
http://www.canonoutsideofauto.ca/play/
onlinebme
سلام خدمت همه همراهان عزیز بابت فعالیت کم کانال در چند روز اخیر عذرخواهی میکنیم 🙏🙏 ✅ برای فصل جدید، برنامه های #ویژه ای تدارک دیده ایم😊 چند نفر به گروه تخصصی و آموزشمیون اضافه شده اند و قصد داریم تخصصی تر در کانال فعالیت کنیم. در نظر سنجی های اخیر متوجه…
✅ مهندسی عصبی (Neural Engineering)
💡 بخش اول: معرفی
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ مهندسی عصبي از حوزه های گسترش يافته در قرن 21 در زمينه مهندسی پزشکی است. از اهداف مهندسی عصبی تحقيقات بنيادين در زمينه سيستم های #عصبی و #عصبی_عضلانی، گسترش روشهای #تشخيص، #درمان و #توانبخشی با استفاده از روش های مهندسی است.
مهندسی عصبي منشأ ايجاد يک فناوری، تحت عنوان فناوری عصبی شده است. هدف اين فناوری، طراحی و ساخت ابزار ميکروالکترونيکی است که با ارتباط مستقيم با سيستم عصبی مرکزی و يا اعصاب محيطی، کنترل خارجــی ارگان های بدن را به عهده میگيرد. اين سيستمها ارگانهای بدن را به همان نحوی کنترل میکنند که سيستم عصبی مرکزي انسان در حالت طبيعی کنترل میکند. امروزه کاربرد فناوری عصبی در توانبخشی و درمان، بسيار گسترش يافته است و تحول شگرفی را در زمينه توانبخشی بوجود آورده است. محصولات اين تکنولوژی بسيار گران قيمت است و از نيازهای ضروری جهت حفظ و ارتقای سطح سلامت جامعه محسوب میشود. مهندسی عصبی تلاش میکند تا با استفاده از تکنیکهای مهندسی اقدام به شناخت، ترمیم و تعویض سیستم عصبی با استفاده از دستگاهای #رابط_مغز_و_کامپیوتر و پروتزهای عصبی کند .
این حوزه از مهندسی، بخشی میان رشتهای است که علومی مانند علوم اعصاب آزمایشی و محاسباتی، عصب شناسی بالینی، مهندسی برق و پردازش سیگنال در پیدایش آن دخیل هستند و از سوی دیگر عناصری از علوم رباتیک، سایبرناتیک، مهندسی کامپیوتر، مهندسی بافتهای عصبی، علم مواد و نانوتکنولوژی نیز در آن به کار گرفته میشوند .
◀️ از محصولات این فناوری می توان به پروتزهای عصبی قلبی، پروتزهای عصبی شنوائی، پروتزهای عصبی تنفسی، پروتزهای عصبی مغزی و پروتزهای عصبی بینائی اشاره کرد. از این فناوری نیز برای کنترل درد، کنترل مثانه، کنترل اسپاستیستی، کنترل بعضی از موارد اپلیپسی، درمان بیماری پارکینسون و کنترل بیماری صرع استفاده می¬شود.
1️⃣ http://www.iust.ac.ir/page.php?slct_pg_id=12765&sid=93&slc_lang=fa
2️⃣ https://bme.duke.edu/research/neural-engineering
3️⃣ https://www.bme.ufl.edu/research/areas/neural_engineering
4️⃣ https://www.mccormick.northwestern.edu/biomedical/research/areas/neural-engineering.html
5️⃣ https://bme.wustl.edu/research/areas/Pages/neural-engineering.aspx
6️⃣ http://www.imperial.ac.uk/bioengineering/research/neural
دروس مهم این گرایش:
• پردازش سیگنالهای پزشکی – زیستی
• کنترل سیستمهای عصبی – عضلانی
• سیستمهای کنترل تطبیقی
• سیستمهای کنترل فازی
• بازشناسی الگو
• سیستمهای کنترل دیجیتال و غیرخطی
• مباحث ویژه در مهندسی پزشکی
• شبکههای عصبی مصنوعی
#مهندسیعصبی
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش اول: معرفی
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ مهندسی عصبي از حوزه های گسترش يافته در قرن 21 در زمينه مهندسی پزشکی است. از اهداف مهندسی عصبی تحقيقات بنيادين در زمينه سيستم های #عصبی و #عصبی_عضلانی، گسترش روشهای #تشخيص، #درمان و #توانبخشی با استفاده از روش های مهندسی است.
مهندسی عصبي منشأ ايجاد يک فناوری، تحت عنوان فناوری عصبی شده است. هدف اين فناوری، طراحی و ساخت ابزار ميکروالکترونيکی است که با ارتباط مستقيم با سيستم عصبی مرکزی و يا اعصاب محيطی، کنترل خارجــی ارگان های بدن را به عهده میگيرد. اين سيستمها ارگانهای بدن را به همان نحوی کنترل میکنند که سيستم عصبی مرکزي انسان در حالت طبيعی کنترل میکند. امروزه کاربرد فناوری عصبی در توانبخشی و درمان، بسيار گسترش يافته است و تحول شگرفی را در زمينه توانبخشی بوجود آورده است. محصولات اين تکنولوژی بسيار گران قيمت است و از نيازهای ضروری جهت حفظ و ارتقای سطح سلامت جامعه محسوب میشود. مهندسی عصبی تلاش میکند تا با استفاده از تکنیکهای مهندسی اقدام به شناخت، ترمیم و تعویض سیستم عصبی با استفاده از دستگاهای #رابط_مغز_و_کامپیوتر و پروتزهای عصبی کند .
این حوزه از مهندسی، بخشی میان رشتهای است که علومی مانند علوم اعصاب آزمایشی و محاسباتی، عصب شناسی بالینی، مهندسی برق و پردازش سیگنال در پیدایش آن دخیل هستند و از سوی دیگر عناصری از علوم رباتیک، سایبرناتیک، مهندسی کامپیوتر، مهندسی بافتهای عصبی، علم مواد و نانوتکنولوژی نیز در آن به کار گرفته میشوند .
◀️ از محصولات این فناوری می توان به پروتزهای عصبی قلبی، پروتزهای عصبی شنوائی، پروتزهای عصبی تنفسی، پروتزهای عصبی مغزی و پروتزهای عصبی بینائی اشاره کرد. از این فناوری نیز برای کنترل درد، کنترل مثانه، کنترل اسپاستیستی، کنترل بعضی از موارد اپلیپسی، درمان بیماری پارکینسون و کنترل بیماری صرع استفاده می¬شود.
1️⃣ http://www.iust.ac.ir/page.php?slct_pg_id=12765&sid=93&slc_lang=fa
2️⃣ https://bme.duke.edu/research/neural-engineering
3️⃣ https://www.bme.ufl.edu/research/areas/neural_engineering
4️⃣ https://www.mccormick.northwestern.edu/biomedical/research/areas/neural-engineering.html
5️⃣ https://bme.wustl.edu/research/areas/Pages/neural-engineering.aspx
6️⃣ http://www.imperial.ac.uk/bioengineering/research/neural
دروس مهم این گرایش:
• پردازش سیگنالهای پزشکی – زیستی
• کنترل سیستمهای عصبی – عضلانی
• سیستمهای کنترل تطبیقی
• سیستمهای کنترل فازی
• بازشناسی الگو
• سیستمهای کنترل دیجیتال و غیرخطی
• مباحث ویژه در مهندسی پزشکی
• شبکههای عصبی مصنوعی
#مهندسیعصبی
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
www.iust.ac.ir
پژوهشکده فناوری عصبی - دانشگاه علم و صنعت ایران - پژوهشگاه علم و صنعت ایران
دانشگاه علم و صنعت ايران Iran University of Science and Technology was originally founded in 1929 as the first Iranian institution to train engineers. Located in Tehran, it consists of 14 departments, and has two branches in Arak and Behshahr. Web site offers…
onlinebme
winter1516_lecture7.pdf
✅ شبکه عصبی کانولوشن
💡 بخش دوم: خلاصه معماری
نویسنده: محمد نوری زاده چرلو (عضو ارشد گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ همانطور که ما میدانیم، شبکه های عصبی یک ورودی در قالب یک بردار ویژگی دریافت میکنند و سپس آنرا از تعدادی لایه مخفی (Hidden layer) عبور میدهند و نهایتا یک خروجی که نتیجه پردازش لایه های مخفی است در لایه خروجی شبکه ظاهر میشود.
هر لایه مخفی از تعدادی نورون تشکیل شده که این نورونها به تمام نورونهای لایه قبل از خود متصل می-شوند. نورونهای هر لایه بصورت مستقل عمل کرده و هیچ ارتباطی با یکدیگر ندارند. آخرین لایه تماما متصل (fully connected layer) به لایه خروجی (output layer) معروف است و معمولا نقش نمایش دهنده امتیاز هر دسته(class) را ایفا میکند.
شبکههای عصبی معمولی برای تصاویر معمول(full images) بخوبی عمل نمی کنند زیرا که حجم بردار ورودی بالاست و نمیتواند مسئله را با دقت مناسبی حل کند.
بعنوان مثال اگر یک تصویر به اندازه 32*32 باشد (۳۲ پیکسل عرض، ۳۲ پیکسل ارتفاع و ۳ کانال رنگ ). بنابراین یک نورون با اتصال کامل (fully connected) در لایه مخفی اول یک شبکه عصبی معمولی 32*32*3=3072 وزن خواهد داشت . این مقدار شاید در نظر اول مقدار قابل توجهی بنظر نیاید اما بطور واضح مشخص است که این معماری تماما مرتبط قابل استفاده برای تصاویر بزرگتر نخواهد بود. برای مثال یک تصویر با اندازه متعارف تر مثل 200*200*3 باعث میشود که یک نورون120000 وزن داشته باشد! علاوه بر این ما قطعا خواهان تعداد بیشتری از این نورون ها خواهیم بود، پس تعداد پارامترها بسرعت افزایش پیدا میکند. مشخص است این اتصال کامل (Full connectivity) باعث اتلاف (wasteful) بوده و تعداد بسیار زیاد پارامترها هم بسرعت باعث overfitting خواهد شد.
برای حل این مشکل، از تصاویر ویژگیهای مهم وکلیدی را که نماینده خوبی برای تصویر باشند را استخراج میکنند و به صورت یک بردار ویژگی به شبکه اعمال میکنند.
مثال2: فرض کنید که میخواهیم توسط شبکه عصبی تشخیص چهره را انجام دهیم:
به دو دلیل نمیتوانیم مستقیما از پیسکلهای خود تصویر استفاده کنیم:
- سایز تصویر بزرگ هست و نمیتوان به درستی شبکه را آموزش داد و مشکلاتی که توضیح دادیم پیش میاد.
- تصاویر در شرایط مختلف گرفته می شود و ممکن است ویژگی های تصویر تغییر کند. برای مثال شخص یکبار با ریش و سیبیل باشد و در عکس دیگر بدون ریش و سیبیل. یا اینکه تصویر از یک زاویه دیگه ای گرفته شود. سایز تصویر تغییر کند، شدت روشنایی تصویر تغییر کند! وووو
🔺 خلاصه شرایط خیلی تاثیر گذار هستند و عملا زمانی که یکی از شرایط گفته شده اتفاق بیافتد شبکه نمیتواند مسئله رو حل کند، چون مقادیر پیکسلها در تصاویر مختلف تغییر خواهند کرد.
در استخراج ویژگی باید چند مسئله در نظر گرفته شود:
- ویژگیای که استخراج میشود باید discriminant (مجزا) باشد، یعنی مقدار متفاوتی بین کلاسهای مختلف داشته باشد.
- به تغییراتی مثل چرخش، شدت روشنایی و غیره حساس نباشد، یعنی با تغییر شرایط، ویژگیها تغییر نکنند.
استخراج ویژگی یه سری مشکلات دارد و معمولا ما در استخراج ویژگی به مشکل میخوریم و به همین خاطر هر روز روشهای جدیدی برای استخراج ویژگی توسط محققین ارائه میشود.
شبکه های عصبی کانولوشنال یجورایی حالت تعمیم یافته شبکه های عصبی هستند، که در آنها دیگر نیازی نیست که ویژگی استخراج شود، خود تصویر به طور مستقیم به شبکه اعمال میشود و شبکه خودش در پروسه یادگیری، در لایه های مختلف از تصویر ویژگی استخراج میکند.
http://cs231n.github.io/convolutional-networks/
#شبکه_عصبی_کانولوشن
#شبکه_عصبی_عمیق
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش دوم: خلاصه معماری
نویسنده: محمد نوری زاده چرلو (عضو ارشد گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ همانطور که ما میدانیم، شبکه های عصبی یک ورودی در قالب یک بردار ویژگی دریافت میکنند و سپس آنرا از تعدادی لایه مخفی (Hidden layer) عبور میدهند و نهایتا یک خروجی که نتیجه پردازش لایه های مخفی است در لایه خروجی شبکه ظاهر میشود.
هر لایه مخفی از تعدادی نورون تشکیل شده که این نورونها به تمام نورونهای لایه قبل از خود متصل می-شوند. نورونهای هر لایه بصورت مستقل عمل کرده و هیچ ارتباطی با یکدیگر ندارند. آخرین لایه تماما متصل (fully connected layer) به لایه خروجی (output layer) معروف است و معمولا نقش نمایش دهنده امتیاز هر دسته(class) را ایفا میکند.
شبکههای عصبی معمولی برای تصاویر معمول(full images) بخوبی عمل نمی کنند زیرا که حجم بردار ورودی بالاست و نمیتواند مسئله را با دقت مناسبی حل کند.
بعنوان مثال اگر یک تصویر به اندازه 32*32 باشد (۳۲ پیکسل عرض، ۳۲ پیکسل ارتفاع و ۳ کانال رنگ ). بنابراین یک نورون با اتصال کامل (fully connected) در لایه مخفی اول یک شبکه عصبی معمولی 32*32*3=3072 وزن خواهد داشت . این مقدار شاید در نظر اول مقدار قابل توجهی بنظر نیاید اما بطور واضح مشخص است که این معماری تماما مرتبط قابل استفاده برای تصاویر بزرگتر نخواهد بود. برای مثال یک تصویر با اندازه متعارف تر مثل 200*200*3 باعث میشود که یک نورون120000 وزن داشته باشد! علاوه بر این ما قطعا خواهان تعداد بیشتری از این نورون ها خواهیم بود، پس تعداد پارامترها بسرعت افزایش پیدا میکند. مشخص است این اتصال کامل (Full connectivity) باعث اتلاف (wasteful) بوده و تعداد بسیار زیاد پارامترها هم بسرعت باعث overfitting خواهد شد.
برای حل این مشکل، از تصاویر ویژگیهای مهم وکلیدی را که نماینده خوبی برای تصویر باشند را استخراج میکنند و به صورت یک بردار ویژگی به شبکه اعمال میکنند.
مثال2: فرض کنید که میخواهیم توسط شبکه عصبی تشخیص چهره را انجام دهیم:
به دو دلیل نمیتوانیم مستقیما از پیسکلهای خود تصویر استفاده کنیم:
- سایز تصویر بزرگ هست و نمیتوان به درستی شبکه را آموزش داد و مشکلاتی که توضیح دادیم پیش میاد.
- تصاویر در شرایط مختلف گرفته می شود و ممکن است ویژگی های تصویر تغییر کند. برای مثال شخص یکبار با ریش و سیبیل باشد و در عکس دیگر بدون ریش و سیبیل. یا اینکه تصویر از یک زاویه دیگه ای گرفته شود. سایز تصویر تغییر کند، شدت روشنایی تصویر تغییر کند! وووو
🔺 خلاصه شرایط خیلی تاثیر گذار هستند و عملا زمانی که یکی از شرایط گفته شده اتفاق بیافتد شبکه نمیتواند مسئله رو حل کند، چون مقادیر پیکسلها در تصاویر مختلف تغییر خواهند کرد.
در استخراج ویژگی باید چند مسئله در نظر گرفته شود:
- ویژگیای که استخراج میشود باید discriminant (مجزا) باشد، یعنی مقدار متفاوتی بین کلاسهای مختلف داشته باشد.
- به تغییراتی مثل چرخش، شدت روشنایی و غیره حساس نباشد، یعنی با تغییر شرایط، ویژگیها تغییر نکنند.
استخراج ویژگی یه سری مشکلات دارد و معمولا ما در استخراج ویژگی به مشکل میخوریم و به همین خاطر هر روز روشهای جدیدی برای استخراج ویژگی توسط محققین ارائه میشود.
شبکه های عصبی کانولوشنال یجورایی حالت تعمیم یافته شبکه های عصبی هستند، که در آنها دیگر نیازی نیست که ویژگی استخراج شود، خود تصویر به طور مستقیم به شبکه اعمال میشود و شبکه خودش در پروسه یادگیری، در لایه های مختلف از تصویر ویژگی استخراج میکند.
http://cs231n.github.io/convolutional-networks/
#شبکه_عصبی_کانولوشن
#شبکه_عصبی_عمیق
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
cs231n.github.io
CS231n Convolutional Neural Networks for Visual Recognition
Course materials and notes for Stanford class CS231n: Convolutional Neural Networks for Visual Recognition.
✅ تعریف شبکه های عصبی کانولوشن:
شبکه های عصبی کانولوشن عمیق یک نوعی از شبکه های عصبی هستند که از عملکرد بیولوژیک مغز الهام گرفته شده اند. در ساده ترین شکل و فرم آن، مغز یک شبکه گسترده ای از نورون های مستقل است که باهم توسط جابجایی ایمپالسهای الکتریکی کار می کنند. شبکه عصبی کانولوشن از سه بخش اساسی تشکیل شده است: #نورون مصنوعی، اتصالات ورودی و خروجی آن.
☸️ یک شبکه عصبی کانولوشنال معمولا از لایه های زیر تشکیل میشود:
• Input Layer
• Convolutional Layer
• Pooling Layer
• Normalization Layer
• Fully-Connected Layer
◀️ لایه ورودی (Input layer) شامل مقادیر پیکسل های خام تصویر ورودی ما هستند.
◀️ لایه کانولوشن (CONV layer) این لایه خروجی نورونهایی که به نواحی محلی در ورودی متصل هستند را محاسبه میکند. این لایه عمل کانولوشن یا همان ضرب نقطه ای بین وزنهای هر نورون و ناحیه ای که آنها به آن متصل هستند صورت میگیرد.
◀️ لایه Pooling عملیات downsampling را در امتداد ابعاد مکانی (عرض و ارتفاع) انجام میدهد، این لایه حساسیت شبکه به چرخش و اندازه را از بین میبرد.
◀️لایه normalization گاهی اوقات با قصد اجرای طرح های مهاری مشاهده شده در مغز بیولوژیکی، استفاده میشود.
◀️ لایه Fully-Connected یا تماما متصل وظیفه محاسبه امتیاز دسته ها (class) را دارد.
🌐جهت مطالعه بیشتر در این حوزه میتونید به سایت های زیر مراجعه کنید:
1️⃣ http://cs231n.github.io/convolutional-networks/
2️⃣ http://deeplearning.net/tutorial/lenet.html
3️⃣ http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
4️⃣ http://deeplearning.ir/tag/%D8%B4%D8%A8%DA%A9%D9%87-%D8%B9%D8%B5%D8%A8%DB%8C-%DA%A9%D8%A7%D9%86%D9%88%D9%84%D9%88%D8%B4%D9%86/
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
شبکه های عصبی کانولوشن عمیق یک نوعی از شبکه های عصبی هستند که از عملکرد بیولوژیک مغز الهام گرفته شده اند. در ساده ترین شکل و فرم آن، مغز یک شبکه گسترده ای از نورون های مستقل است که باهم توسط جابجایی ایمپالسهای الکتریکی کار می کنند. شبکه عصبی کانولوشن از سه بخش اساسی تشکیل شده است: #نورون مصنوعی، اتصالات ورودی و خروجی آن.
☸️ یک شبکه عصبی کانولوشنال معمولا از لایه های زیر تشکیل میشود:
• Input Layer
• Convolutional Layer
• Pooling Layer
• Normalization Layer
• Fully-Connected Layer
◀️ لایه ورودی (Input layer) شامل مقادیر پیکسل های خام تصویر ورودی ما هستند.
◀️ لایه کانولوشن (CONV layer) این لایه خروجی نورونهایی که به نواحی محلی در ورودی متصل هستند را محاسبه میکند. این لایه عمل کانولوشن یا همان ضرب نقطه ای بین وزنهای هر نورون و ناحیه ای که آنها به آن متصل هستند صورت میگیرد.
◀️ لایه Pooling عملیات downsampling را در امتداد ابعاد مکانی (عرض و ارتفاع) انجام میدهد، این لایه حساسیت شبکه به چرخش و اندازه را از بین میبرد.
◀️لایه normalization گاهی اوقات با قصد اجرای طرح های مهاری مشاهده شده در مغز بیولوژیکی، استفاده میشود.
◀️ لایه Fully-Connected یا تماما متصل وظیفه محاسبه امتیاز دسته ها (class) را دارد.
🌐جهت مطالعه بیشتر در این حوزه میتونید به سایت های زیر مراجعه کنید:
1️⃣ http://cs231n.github.io/convolutional-networks/
2️⃣ http://deeplearning.net/tutorial/lenet.html
3️⃣ http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
4️⃣ http://deeplearning.ir/tag/%D8%B4%D8%A8%DA%A9%D9%87-%D8%B9%D8%B5%D8%A8%DB%8C-%DA%A9%D8%A7%D9%86%D9%88%D9%84%D9%88%D8%B4%D9%86/
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
cs231n.github.io
CS231n Convolutional Neural Networks for Visual Recognition
Course materials and notes for Stanford class CS231n: Convolutional Neural Networks for Visual Recognition.
onlinebme
✅ مهندسی عصبی (Neural Engineering) 💡 بخش اول: معرفی 👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران) ✍️ مهندسی عصبي از حوزه های گسترش يافته در قرن 21 در زمينه مهندسی پزشکی است. از اهداف مهندسی عصبی تحقيقات بنيادين…
✅ مهندسی عصبی (Neural Engineering)
💡 بخش دوم: تحریک الکتریکی عملکردی (Functional Electrical Stimulation)
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ تحریک الکتریکی عملکردی یک فناوری در حوزه مهندسی عصبی میباشد. این فناوری زمانی که #ضایعه_نخاعی یا #قطع_نخاع در #عضله یا قسمتی از بدن رخ میدهد بیشترین کاربرد دارد.
براثر ضایعه در سیستم عصبی، انتقال پیامهای عصبی دچار #اختلال شده و باعث ازکارافتادن و فلج شدن اندام مختلف فرد میشود. ازکارافتادن اندامها نهتنها بر سلامت عمومی و کیفیت زندگی فرد ضایعه نخاعی تأثیر میگذارد بلکه فرد بیمار را در معرض عوارض جانبی زیادی قرار میدهد.
◀️ مهمترین عوارض ایجادشده پس از ایجاد ضایعه عصبی (Spinil Cord Injury) عبارتاند از:
• آتروفی عضلانی
• خشکی مفاصل
• اسپاسم عضلانی
• پوکی استخوان
• زخم بستر
• عدم کنترل #مثانه (بیاختیاری و تخلیه ناکامل)
• و ....
🔺 یکی از روشهای مؤثر درکاهش عوارض پس از ضایعه نخاعی و همینطور بازیابی توانایی حرکت اندامهای ازکارافتاده، استفاده از FES است. در صورت سالم ماندن بافتهای عضلانی و شاخههای عصبی میتوان از این فناوری برای بازتوانی عضو ازکارافتاده استفاده نمود. FES یکی از روشهای متداول در جبران نسبی عوارض ناشی از ضایعی نخاعی است که با اعمال جریان الکتریکی به عصب، نخاع و بافت عضلانی، فیبرهای عصبی و عضلانی در عضو فلج را فعال کرده و بافت مورد نظر با توجه به هدف تحریک منجر به منقبض، خستگی (به آرامش رسیدن عضله)، حرکت و کاهش درد میشود.
#مهندسیعصبی
#تحریک_الکتریکی_عملکردی
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش دوم: تحریک الکتریکی عملکردی (Functional Electrical Stimulation)
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ تحریک الکتریکی عملکردی یک فناوری در حوزه مهندسی عصبی میباشد. این فناوری زمانی که #ضایعه_نخاعی یا #قطع_نخاع در #عضله یا قسمتی از بدن رخ میدهد بیشترین کاربرد دارد.
براثر ضایعه در سیستم عصبی، انتقال پیامهای عصبی دچار #اختلال شده و باعث ازکارافتادن و فلج شدن اندام مختلف فرد میشود. ازکارافتادن اندامها نهتنها بر سلامت عمومی و کیفیت زندگی فرد ضایعه نخاعی تأثیر میگذارد بلکه فرد بیمار را در معرض عوارض جانبی زیادی قرار میدهد.
◀️ مهمترین عوارض ایجادشده پس از ایجاد ضایعه عصبی (Spinil Cord Injury) عبارتاند از:
• آتروفی عضلانی
• خشکی مفاصل
• اسپاسم عضلانی
• پوکی استخوان
• زخم بستر
• عدم کنترل #مثانه (بیاختیاری و تخلیه ناکامل)
• و ....
🔺 یکی از روشهای مؤثر درکاهش عوارض پس از ضایعه نخاعی و همینطور بازیابی توانایی حرکت اندامهای ازکارافتاده، استفاده از FES است. در صورت سالم ماندن بافتهای عضلانی و شاخههای عصبی میتوان از این فناوری برای بازتوانی عضو ازکارافتاده استفاده نمود. FES یکی از روشهای متداول در جبران نسبی عوارض ناشی از ضایعی نخاعی است که با اعمال جریان الکتریکی به عصب، نخاع و بافت عضلانی، فیبرهای عصبی و عضلانی در عضو فلج را فعال کرده و بافت مورد نظر با توجه به هدف تحریک منجر به منقبض، خستگی (به آرامش رسیدن عضله)، حرکت و کاهش درد میشود.
#مهندسیعصبی
#تحریک_الکتریکی_عملکردی
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت
onlinebme
مهندسی عصبی.pdf
✅ مهندسی عصبی (Neural Engineering)
💡 بخش پنجم : #فواید و #کاربرد های تحریک الکتریکی عملکردی
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ تحریک الکتریکی عملکردی میتواند برای باز توانی اندام ازکارافتاده افراد ضایعهی نخاعی مورداستفاده قرار گیرد و این افراد میتوانند از فواید فیزیولوژیکی و روانی آن استفاده نمایند. محققان دریافتهاند که استفاده مرتب از تحریک الکتریکی سبب بهبود سیستم قلبی-عروقی و سیستم ریوی میشود. آتروپی عضلات اسکلتی، افزایش گردش خون در اندامهای فلج، بهبود سیستم ایمنی، بهبود زخم بستر، تنظیم ریتم قلبی، رفع افتادگی پا و بهبود عملکرد تنفسی، از دیگر فواید استفاده از تحریک الکتریکی عملکردی است.
◀️ کاربردهای تحریک الکتریکی عملکردی
بهطورکلی کاربردهای تحریک الکتریکی به سه گروه تقسیمبندی میشوند:
🔻 کاربردهای تشخیصی: در این کاربرد از تحریک الکتریکی برای ارزیابی میزان سالم بودن سیستم عصبی-عضلانی بیمار استفاده میشود.
🔻 کاربردهای درمانی: تحریک الکتریکی درمانی برای بهبود شرایط فیزیولوژیکی بیمار و با نظارت پزشک انجام میشود. از مزایای این نوع تحریک میتوان به جلوگیری از تحلیل رفتن عضلات و افزایش حجم و نیروی آن، کاهش گرفتگی و انقباضات شدید عضلانی، افزایش گردش خون در عضو فلج و جلوگیری از زخم بستر، جلوگیری از پیشرفت پوکی استخوان، تسریع جوشخوردگی در شکستگیهای استخوان و کاهش درد اشاره نمود.
🔻 کاربردهای عملکردی: در تحریک الکتریکی عملکردی هدف ایجاد حرکتهایی مشابه با حرکتهای ارادی در شخص فلج است. نمونههایی از کاربردهای متداول تحرک الکتریکی عملکردی عبارتاند از: تمرینات مفید برای سیستم قلبی-عروقی، کمک به سیستم تنفسی، تحریک عضلات دست برای رسیدن به اشیا و گرفتن آنها، کنترل مثانه، ایستادن و گام برداشتن، تحریک بهمنظور بازیابی حس، تحریک برای کمک به بیماران دچار پارکینسون و سایر بیماریهای مغزی.
◀️ کنترل تحریک الکتریکی عملکردی
در طی چند دههی اخیر، روشهای کنترلی متنوعی بهمنظور توانبخشی به بیماران ضایعه نخاعی طراحیشده است. روشهای کنترلی حلقه باز بهعنوان ابتداییترین راهکارهای کنترلی تحریک الکتریکی توسعه دادهشدهاند. از این روش کنترلی میتوان در بازیابی برخی از افعال ساده بهره گرفت. سامانهی کنترل حلقه باز از یک الگوی ثابت برای تحریک استفاده میکند و تا انتهای آزمایش این الگو را حفظ میکند. ویژگیهای منحصربهفردی مانند خستگی عضلانی، خاصیت غیرخطی عضله، تأخیر زمانی، انقباضهای مداوم عضلانی و شرایط پیشبینینشدهی دیگر، از کارایی کنترلکننده حلقه باز میکاهد. بنابراین بهمنظور غلبه بر مشکلات ذکرشده به کنترلکنندههای پیچیدهتر نیازمندیم. استفاده از روش حلقه بسته یک راهکار مناسب برای چیره شدن بر بسیاری از محدودیتهای دستگاههای پیچیدهی تحت کنترل است.
#مهندسیعصبی
#تحریک_الکتریکی_عملکردی
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش پنجم : #فواید و #کاربرد های تحریک الکتریکی عملکردی
👨🏫نویسنده: مهندس رضا سعادتیار (عضو گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران)
✍️ تحریک الکتریکی عملکردی میتواند برای باز توانی اندام ازکارافتاده افراد ضایعهی نخاعی مورداستفاده قرار گیرد و این افراد میتوانند از فواید فیزیولوژیکی و روانی آن استفاده نمایند. محققان دریافتهاند که استفاده مرتب از تحریک الکتریکی سبب بهبود سیستم قلبی-عروقی و سیستم ریوی میشود. آتروپی عضلات اسکلتی، افزایش گردش خون در اندامهای فلج، بهبود سیستم ایمنی، بهبود زخم بستر، تنظیم ریتم قلبی، رفع افتادگی پا و بهبود عملکرد تنفسی، از دیگر فواید استفاده از تحریک الکتریکی عملکردی است.
◀️ کاربردهای تحریک الکتریکی عملکردی
بهطورکلی کاربردهای تحریک الکتریکی به سه گروه تقسیمبندی میشوند:
🔻 کاربردهای تشخیصی: در این کاربرد از تحریک الکتریکی برای ارزیابی میزان سالم بودن سیستم عصبی-عضلانی بیمار استفاده میشود.
🔻 کاربردهای درمانی: تحریک الکتریکی درمانی برای بهبود شرایط فیزیولوژیکی بیمار و با نظارت پزشک انجام میشود. از مزایای این نوع تحریک میتوان به جلوگیری از تحلیل رفتن عضلات و افزایش حجم و نیروی آن، کاهش گرفتگی و انقباضات شدید عضلانی، افزایش گردش خون در عضو فلج و جلوگیری از زخم بستر، جلوگیری از پیشرفت پوکی استخوان، تسریع جوشخوردگی در شکستگیهای استخوان و کاهش درد اشاره نمود.
🔻 کاربردهای عملکردی: در تحریک الکتریکی عملکردی هدف ایجاد حرکتهایی مشابه با حرکتهای ارادی در شخص فلج است. نمونههایی از کاربردهای متداول تحرک الکتریکی عملکردی عبارتاند از: تمرینات مفید برای سیستم قلبی-عروقی، کمک به سیستم تنفسی، تحریک عضلات دست برای رسیدن به اشیا و گرفتن آنها، کنترل مثانه، ایستادن و گام برداشتن، تحریک بهمنظور بازیابی حس، تحریک برای کمک به بیماران دچار پارکینسون و سایر بیماریهای مغزی.
◀️ کنترل تحریک الکتریکی عملکردی
در طی چند دههی اخیر، روشهای کنترلی متنوعی بهمنظور توانبخشی به بیماران ضایعه نخاعی طراحیشده است. روشهای کنترلی حلقه باز بهعنوان ابتداییترین راهکارهای کنترلی تحریک الکتریکی توسعه دادهشدهاند. از این روش کنترلی میتوان در بازیابی برخی از افعال ساده بهره گرفت. سامانهی کنترل حلقه باز از یک الگوی ثابت برای تحریک استفاده میکند و تا انتهای آزمایش این الگو را حفظ میکند. ویژگیهای منحصربهفردی مانند خستگی عضلانی، خاصیت غیرخطی عضله، تأخیر زمانی، انقباضهای مداوم عضلانی و شرایط پیشبینینشدهی دیگر، از کارایی کنترلکننده حلقه باز میکاهد. بنابراین بهمنظور غلبه بر مشکلات ذکرشده به کنترلکنندههای پیچیدهتر نیازمندیم. استفاده از روش حلقه بسته یک راهکار مناسب برای چیره شدن بر بسیاری از محدودیتهای دستگاههای پیچیدهی تحت کنترل است.
#مهندسیعصبی
#تحریک_الکتریکی_عملکردی
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت
✅ مشکلات پزشکان – نقش مهندسین
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
به خاطر درخواست مکرر اعضای کانال، قصد داریم روشهای تصویربرداری پزشکی را دوباره به طور مختصر توضیح دهیم. اما لازم است در ابتدا یک سری نکاتی رو ذکر کنیم.
✍️ از آنجا که اکثر ما (مهندسین پزشکی- برق- هوش مصنوعی) برای پایان نامه روی تصاویر پزشکی کار می کنیم و همیشه دغدغه پیدا کردن #داده داریم، در زیر به این موضوع و مشکلاتی که داریم می پردازیم:
روشهای تصویربرداری مختلفی از جمله، اولتراسوند، mri، pet و ... وجود دارند که جهت تشیخص بیماری در بیمارستان ها استفاده می شوند و پزشکان با تجزیه و تحلیل این تصاویر، بیماری فرد را تشیخص می دهند. اما از آنجا که روشهای #دستی به #هزینه و #زمان بالایی نیاز دارند و از آنجایی که تخمینهای مربوط به هر کاربر با کاربر دیگر #متفاوت است، قابلیت #اطمینان پایینی دارند، لازم است که روشهای خودکار و کامپیوتری جهت محاسبه یک سری پارامترها استفاده شود. اهمیت بالای تشخیص بیماری باعث شده محققین زیادی در حوزه #مهندسی علاقه مند به فعالیت در این حوزه پزشکی شوند و به پزشکان در تجزیه و تحلیل تصاویر کمک کنند.
پزشکان معمولا به چند دلیل در تشخیص بیماری به #مشکل میخورند که چهار مورد آنرا توضیح میدهیم:
1- زمان کافی برای تحلیل تمام تصاویر ندارند یا اینطور بگیم که تعداد تصاویر بسیار بالاست و بررسی همه این تصاویر توسط پزشک واقعا #زما_بر است.
برای تشخیص بیماری لازم است پزشکان یک سری پارامترها از روی تصاویر اندازه گیری کنند و طبق اندازه گیریها تصمیم گیری کنند. برای مثال برای تشخیص بیماری های #قلبی لازم است که پزشک از روی تصاویر #نسبت_برون_ده قلبی، حجم بطن چپ، ضحامت دیواره و .... را محاسبه کنند. در پست بعد به طور مفصل در #اکوکاردیوگرافی صحبت خواهیم کرد.
محاسبه این پارامترها توسط پزشک بسیار زمان بر است و عملا سرعت تصمیم گیری و بعضی مواقع دقت تصمیم گیری را پایین می آورد.
2- ممکن است بعضی تصاویر اطلاعات #کافی در مورد بیماری نشان ندهند و تنها با استفاده از یک نوع تصویر(مثلا mri) پزشک نتواند یک بیماری تشخیص دهند.
برای مثال بعضی از روشهای تصویربرداری مثل MRI تنها اطلاعات ساختاری اندامها را در اختیار پزشک قرار میدهند و یا بعضی از روشهای تصویربردای مثل pet تنها اطلاعات عملکردی اندامها را در اختیار پزشک قرار می دهند. اما پزشک برای تشخیص درست به هر دو تصویر به صورت همزمان نیاز دارد!
3- ممکن است تصاویر نویزی باشند و تشخیص بیماری توسط پزشک را سخت کنند
4- ممکن است تشخیص بیماری با چشم غیرمسلح از روی تصاویر ممکن نباشد.
✅ اینجاست که #نقش مهندسین #پررنگ_تر میشود. 👌
🔺برای رفع مشکل اول مهندسین با استفاده از دانش پردازش تصویر، محاسبه پارامترها را به صورت #خودکار انجام میدهند. معمولا به صورت زمان حقیقی پارمترها محاسبه می شوند و پزشک با استفاده از این پارامترها بیماری را سریع تشخیص می دهد و با اینکار ممکن است از یک خطر بزرگ جلوگیری شود و سریع روند درمان شروع شود!
🔺 برای رفع مشکل دوم مهندسین از روشهای انطباق و ادغام تصاویر استفاده می کنند(قبلا این روشها توضییح داده شده است. از هشتکهای قرار داده شده استفاده کنید و مطالب را مطالعه کنید).
ادغام تصاویر، به معنای ترکیب دو یا چند تصویر و به دست آوردن یک تصویر نهایی، با هدف تجمیع اطلاعات مفید در تصویر نهایی، میباشد.
🔺برای رفع مشکل سوم دو راه وجود دارد، یکی اینکه سیستم تصویربرداری را بهبود بدهند، اما از آنجا که هزینه دستگاهها بالاست نمیتوان اینکار را انجام داد. راه دوم اینکه از روشهای پردازش تصویر جهت کاهش نویز استفاده کنیم. یعنی بعد از اینکه تصاویر توسط دستگاههای تصویربرداری گرفته شد، توسط مهندسین نویز تصاویر کاهش یابد تا پزشک بتواند با دقت بالاتری بیماری را تشخیص دهد.
🔺تصاویری وجود دارند که در حوزه زمان(مکان) اطلاعاتی را در مورد بیماری نشان نمیدهند، یعنی نمیتوان با چشم غیرمسلح چنین ویژگی های را مشاهده کرد، ولی وقتی این تصاویر توسط الگورتیمهای پردازش تصاویر به حوزه فرکانس یا زمان-فرکانس انتقال داده میشود اطلاعات مفیدی درباره تصویر میتوان مشاهده کرد که راهکار برای حل مشکل چهارم است.
◀️ پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
به خاطر درخواست مکرر اعضای کانال، قصد داریم روشهای تصویربرداری پزشکی را دوباره به طور مختصر توضیح دهیم. اما لازم است در ابتدا یک سری نکاتی رو ذکر کنیم.
✍️ از آنجا که اکثر ما (مهندسین پزشکی- برق- هوش مصنوعی) برای پایان نامه روی تصاویر پزشکی کار می کنیم و همیشه دغدغه پیدا کردن #داده داریم، در زیر به این موضوع و مشکلاتی که داریم می پردازیم:
روشهای تصویربرداری مختلفی از جمله، اولتراسوند، mri، pet و ... وجود دارند که جهت تشیخص بیماری در بیمارستان ها استفاده می شوند و پزشکان با تجزیه و تحلیل این تصاویر، بیماری فرد را تشیخص می دهند. اما از آنجا که روشهای #دستی به #هزینه و #زمان بالایی نیاز دارند و از آنجایی که تخمینهای مربوط به هر کاربر با کاربر دیگر #متفاوت است، قابلیت #اطمینان پایینی دارند، لازم است که روشهای خودکار و کامپیوتری جهت محاسبه یک سری پارامترها استفاده شود. اهمیت بالای تشخیص بیماری باعث شده محققین زیادی در حوزه #مهندسی علاقه مند به فعالیت در این حوزه پزشکی شوند و به پزشکان در تجزیه و تحلیل تصاویر کمک کنند.
پزشکان معمولا به چند دلیل در تشخیص بیماری به #مشکل میخورند که چهار مورد آنرا توضیح میدهیم:
1- زمان کافی برای تحلیل تمام تصاویر ندارند یا اینطور بگیم که تعداد تصاویر بسیار بالاست و بررسی همه این تصاویر توسط پزشک واقعا #زما_بر است.
برای تشخیص بیماری لازم است پزشکان یک سری پارامترها از روی تصاویر اندازه گیری کنند و طبق اندازه گیریها تصمیم گیری کنند. برای مثال برای تشخیص بیماری های #قلبی لازم است که پزشک از روی تصاویر #نسبت_برون_ده قلبی، حجم بطن چپ، ضحامت دیواره و .... را محاسبه کنند. در پست بعد به طور مفصل در #اکوکاردیوگرافی صحبت خواهیم کرد.
محاسبه این پارامترها توسط پزشک بسیار زمان بر است و عملا سرعت تصمیم گیری و بعضی مواقع دقت تصمیم گیری را پایین می آورد.
2- ممکن است بعضی تصاویر اطلاعات #کافی در مورد بیماری نشان ندهند و تنها با استفاده از یک نوع تصویر(مثلا mri) پزشک نتواند یک بیماری تشخیص دهند.
برای مثال بعضی از روشهای تصویربرداری مثل MRI تنها اطلاعات ساختاری اندامها را در اختیار پزشک قرار میدهند و یا بعضی از روشهای تصویربردای مثل pet تنها اطلاعات عملکردی اندامها را در اختیار پزشک قرار می دهند. اما پزشک برای تشخیص درست به هر دو تصویر به صورت همزمان نیاز دارد!
3- ممکن است تصاویر نویزی باشند و تشخیص بیماری توسط پزشک را سخت کنند
4- ممکن است تشخیص بیماری با چشم غیرمسلح از روی تصاویر ممکن نباشد.
✅ اینجاست که #نقش مهندسین #پررنگ_تر میشود. 👌
🔺برای رفع مشکل اول مهندسین با استفاده از دانش پردازش تصویر، محاسبه پارامترها را به صورت #خودکار انجام میدهند. معمولا به صورت زمان حقیقی پارمترها محاسبه می شوند و پزشک با استفاده از این پارامترها بیماری را سریع تشخیص می دهد و با اینکار ممکن است از یک خطر بزرگ جلوگیری شود و سریع روند درمان شروع شود!
🔺 برای رفع مشکل دوم مهندسین از روشهای انطباق و ادغام تصاویر استفاده می کنند(قبلا این روشها توضییح داده شده است. از هشتکهای قرار داده شده استفاده کنید و مطالب را مطالعه کنید).
ادغام تصاویر، به معنای ترکیب دو یا چند تصویر و به دست آوردن یک تصویر نهایی، با هدف تجمیع اطلاعات مفید در تصویر نهایی، میباشد.
🔺برای رفع مشکل سوم دو راه وجود دارد، یکی اینکه سیستم تصویربرداری را بهبود بدهند، اما از آنجا که هزینه دستگاهها بالاست نمیتوان اینکار را انجام داد. راه دوم اینکه از روشهای پردازش تصویر جهت کاهش نویز استفاده کنیم. یعنی بعد از اینکه تصاویر توسط دستگاههای تصویربرداری گرفته شد، توسط مهندسین نویز تصاویر کاهش یابد تا پزشک بتواند با دقت بالاتری بیماری را تشخیص دهد.
🔺تصاویری وجود دارند که در حوزه زمان(مکان) اطلاعاتی را در مورد بیماری نشان نمیدهند، یعنی نمیتوان با چشم غیرمسلح چنین ویژگی های را مشاهده کرد، ولی وقتی این تصاویر توسط الگورتیمهای پردازش تصاویر به حوزه فرکانس یا زمان-فرکانس انتقال داده میشود اطلاعات مفیدی درباره تصویر میتوان مشاهده کرد که راهکار برای حل مشکل چهارم است.
◀️ پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت
onlinebme
✅ مشکلات پزشکان – نقش مهندسین 💡 بخش اول 👨🏫نویسنده: محمد نوری زاده چرلو به خاطر درخواست مکرر اعضای کانال، قصد داریم روشهای تصویربرداری پزشکی را دوباره به طور مختصر توضیح دهیم. اما لازم است در ابتدا یک سری نکاتی رو ذکر کنیم. ✍️ از آنجا که اکثر ما (مهندسین…
✅ مشکلات پزشکان – نقش مهندسین
💡 بخش دوم
👨🏫نویسنده: محمد نوری زاده چرلو
برای اینکه بتوانیم در حوزه پزشکی پیشرفتی داشته باشیم، لازم است که تبادل اطلاعات بین پزشکان و مهندسین وجود داشته باشد و بیمارستانها با دانشگاهها همکاریهای هدفمند داشته باشند. در بیمارستانها باید فضایی باشد که پزشکان و مهندسین باهم به صورت هدفمند همکاری کنند.
⚠️ ولی متاسفانه در #ایران بیمارستانها با دانشگاهها هیچگونه همکاری (دانشگاههای مهندسی) ندارند و به ندرت میتوان پزشکی پیدا کرد که با مهندسین همکاری داشته باشند.
برای اینکه مهندسین هم بتوانند ایده های خود را در تشخیص بیماری از روی تصاویر پیاده کنند و بتوانند از دانش های دیگه ای از قبیل هوش مصنوعی در این زمینه استفاده کنند، لازم است که یک سری تصاویر استاندارد و البته تعداد کافی داشته باشند. متاسفانه عمده ترین مشکل ما مهندسین پیدا کردن همین #داده است و #عمرکوتاه ما در دوره کارشناسی ارشد و دکتری بیشتر برای پیدا کردن داده #صرف میشود تا تحقیق و پژوهش!😞😕 و به خاطر محدودیت زمانی نمیتوانیم ایده های خود را عملی کنیم و معمولا در آخر کار دانشجو به صورت عجله ای صرفا جهت دفاع پردازشهای مقدماتی روی تصاویر انجام میدهد(البته در دکتری فرصت 4 ساله هست و گاها با مشکل مواجه نمیشوند).
⚠️متاسفانه در دانشگاههای ایران آزمایشگاهی جهت تصویربرداری و انجام آزمایشات به خاطر هزینه های بسیار بالای تجهیزات پزشکی وجود ندارد. و از طرف دیگر در بیمارستانها هم جایی برای این آزمایشات توسط مهندسین وجود ندارد.
◀️تنها چاره دانشجو کمک گرفتن از پزشکان هست که متاسفانه این اتفاق به ندرت پیش میاد که پزشک فرصت کافی برای همکاری با دانشجو داشته باشد چون وقتشو برای محاسبه پارامترها به صورت #دستی صرف می کند. 😂😏
🔺به طور میانگین مدت زمانی که یک دانشجو برای پیدا کردن داده در ایران صرف میکند از سه تا 6 ماه هست! عملا عمر دانشجو صرف پیدا کردن داده می شود و البته در آخر داده ای غیراستاندارد و تعداد محدود که عملا نتایج از دید آماری قابل اطمینان نیستند پیدا می کند!
✅در کشورهای پیشرفته، معمولا بانک اطلاعاتی بسیاری زیادی وجود دارد و معمولا بیمارستانها اطلاعات بیماران را با رعایت تمام استانداردها ذخیره می کنند و در اختیار محققین خود قرار میدهند و به خاطر همین هست این همه پیشرفت می کنند.
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش دوم
👨🏫نویسنده: محمد نوری زاده چرلو
برای اینکه بتوانیم در حوزه پزشکی پیشرفتی داشته باشیم، لازم است که تبادل اطلاعات بین پزشکان و مهندسین وجود داشته باشد و بیمارستانها با دانشگاهها همکاریهای هدفمند داشته باشند. در بیمارستانها باید فضایی باشد که پزشکان و مهندسین باهم به صورت هدفمند همکاری کنند.
⚠️ ولی متاسفانه در #ایران بیمارستانها با دانشگاهها هیچگونه همکاری (دانشگاههای مهندسی) ندارند و به ندرت میتوان پزشکی پیدا کرد که با مهندسین همکاری داشته باشند.
برای اینکه مهندسین هم بتوانند ایده های خود را در تشخیص بیماری از روی تصاویر پیاده کنند و بتوانند از دانش های دیگه ای از قبیل هوش مصنوعی در این زمینه استفاده کنند، لازم است که یک سری تصاویر استاندارد و البته تعداد کافی داشته باشند. متاسفانه عمده ترین مشکل ما مهندسین پیدا کردن همین #داده است و #عمرکوتاه ما در دوره کارشناسی ارشد و دکتری بیشتر برای پیدا کردن داده #صرف میشود تا تحقیق و پژوهش!😞😕 و به خاطر محدودیت زمانی نمیتوانیم ایده های خود را عملی کنیم و معمولا در آخر کار دانشجو به صورت عجله ای صرفا جهت دفاع پردازشهای مقدماتی روی تصاویر انجام میدهد(البته در دکتری فرصت 4 ساله هست و گاها با مشکل مواجه نمیشوند).
⚠️متاسفانه در دانشگاههای ایران آزمایشگاهی جهت تصویربرداری و انجام آزمایشات به خاطر هزینه های بسیار بالای تجهیزات پزشکی وجود ندارد. و از طرف دیگر در بیمارستانها هم جایی برای این آزمایشات توسط مهندسین وجود ندارد.
◀️تنها چاره دانشجو کمک گرفتن از پزشکان هست که متاسفانه این اتفاق به ندرت پیش میاد که پزشک فرصت کافی برای همکاری با دانشجو داشته باشد چون وقتشو برای محاسبه پارامترها به صورت #دستی صرف می کند. 😂😏
🔺به طور میانگین مدت زمانی که یک دانشجو برای پیدا کردن داده در ایران صرف میکند از سه تا 6 ماه هست! عملا عمر دانشجو صرف پیدا کردن داده می شود و البته در آخر داده ای غیراستاندارد و تعداد محدود که عملا نتایج از دید آماری قابل اطمینان نیستند پیدا می کند!
✅در کشورهای پیشرفته، معمولا بانک اطلاعاتی بسیاری زیادی وجود دارد و معمولا بیمارستانها اطلاعات بیماران را با رعایت تمام استانداردها ذخیره می کنند و در اختیار محققین خود قرار میدهند و به خاطر همین هست این همه پیشرفت می کنند.
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت
onlinebme
✅ مشکلات پزشکان – نقش مهندسین 💡 بخش دوم 👨🏫نویسنده: محمد نوری زاده چرلو برای اینکه بتوانیم در حوزه پزشکی پیشرفتی داشته باشیم، لازم است که تبادل اطلاعات بین پزشکان و مهندسین وجود داشته باشد و بیمارستانها با دانشگاهها همکاریهای هدفمند داشته باشند. در بیمارستانها…
✅ روشهای تصویربرداری پزشکی
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
1⃣ اکوکاردیوگرافی
اکوکاردیوگرافی یکی از مهمترین ابزارهای تشخیصی در حوزه پزشکی می¬باشد. از مهمترین مزیتهای این روش ماهیت غیرتهاجمی، عدم خطر تابش امواج اولتراسوند(در حوزه تصویربرداری)، هزینه پایین و رزولوشن زمانی بالا را میتوان نام برد. اکوکاردیوگرافی به خاطر داشتن رزولوشن زمانی بالا در فراهم کردن ارزیابی سریع از عملکرد قلب بسیار موفق بوده است. برای ارزیابی کمی از عملکردهای قلب که شامل نسبت برون ده قلبی و دنبال کردن حرکت دیواره قلبی است، تعیین حجم بطن قلبی در هر زمان برای بدست آوردن کمیتهای مهم پزشکی جهت کنترل وضعیت بیمار ضروری میباشد.
2⃣ تصویر برداری رزونانس مغناطیسی(MRI):
فرآیندی است که از مغناطیس، امواج رادیویی و یک کامپیوتر جهت ایجاد یک سری تصاویر جزئی از مناطق داخل بدن استفاده میکند. این روند را تصویربرداری رزونانس مغناطیسی هستهای (NMRI) نیز مینامند.
• نحوه تصویربرداری MRI
در MRI ابتدا بیمار در یک میدان مغناطیسی قوی قرار گرفته و سپس امواج رادیویی به سوی او تابیده میشود. بافتهای بدن در جواب به این موقعیت امواج رادیویی دیگری را از خود ساطع میکنند. با دریافت این امواج رادیویی که از بدن بیمار ساطع میشود و تحلیل این امواج توسط یک کامپیوتر پرقدرت، تصاویری بر روی مانیتور دستگاه ایجاد میشوند که سطوح مقطعی از اندام مورد نظر را نشان میدهند.
🔷 انواع MRI
1- MRI با وزن دهی T1
این یک روش پایه در اسکن MRI میباشد، برای مثال، در این روش تصویر سازی، تفاوت دو بافت چربی و آب، به صورت تیرهتر بودن آب نسبت به بافت چربی نمایان میشود.
2- MRI با وزن دهی T2
این روش نیز یکی از روشهای اصلی تصویر سازی MRI میباشد. در این روش نیز مانند وزندهی T1، چربی و آب قابل تفکیک بوده با این تفاوت که چربی تیرهتر و آب روشنتر در تصویر ظاهر میگردد.
✅جهت آشنایی بیشتر با تصویربرداری MRI به سایت تخصصی زیر مراجعه کنید
https://mrifarsi.ir/
لينك سوپر گروه تخصصي MRI
https://t.me/joinchat/AAAAADvxZEg5wS7DLvx6hQ
3⃣ CT Scan
فرآیندی است که یک سری تصاویر جزئی از مناطق داخل بدن، که از زوایای مختلف گرفته شدهاند، ایجاد میکند. تصاویر توسط کامپیوتری که به یک دستگاه اشعه x متصل است، ایجاد میشوند. رنگدانهای ممکن است داخل عروق تزریق شود تا به ارگانها و بافتها کمک کند واضحتر ظاهر شوند. این پروسه توموگرافی کامپیوتری نیز نامیده میشود.
4⃣ اسکن PET (توموگرافی با گسیل پوزیترون)
فرایندی جهت یافتن سلولهای تومور در بدن میباشد. مقدار کمی از گلوکز رادیواکتیو داخل رگ تزریق میشود. اسکنر PET در اطراف بدن میچرخد و یک تصویر از جاهایی از بدن که گلوکز استفاده میشود، می گیرد. سلولهای تومور بدخیم به خاطر اینکه فعالتر هستند وگلوکز بیشتری نسبت به سلولهای نرمال مصرف میکنند، در تصویر روشنتر ظاهر میشوند.
پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش اول
👨🏫نویسنده: محمد نوری زاده چرلو
1⃣ اکوکاردیوگرافی
اکوکاردیوگرافی یکی از مهمترین ابزارهای تشخیصی در حوزه پزشکی می¬باشد. از مهمترین مزیتهای این روش ماهیت غیرتهاجمی، عدم خطر تابش امواج اولتراسوند(در حوزه تصویربرداری)، هزینه پایین و رزولوشن زمانی بالا را میتوان نام برد. اکوکاردیوگرافی به خاطر داشتن رزولوشن زمانی بالا در فراهم کردن ارزیابی سریع از عملکرد قلب بسیار موفق بوده است. برای ارزیابی کمی از عملکردهای قلب که شامل نسبت برون ده قلبی و دنبال کردن حرکت دیواره قلبی است، تعیین حجم بطن قلبی در هر زمان برای بدست آوردن کمیتهای مهم پزشکی جهت کنترل وضعیت بیمار ضروری میباشد.
2⃣ تصویر برداری رزونانس مغناطیسی(MRI):
فرآیندی است که از مغناطیس، امواج رادیویی و یک کامپیوتر جهت ایجاد یک سری تصاویر جزئی از مناطق داخل بدن استفاده میکند. این روند را تصویربرداری رزونانس مغناطیسی هستهای (NMRI) نیز مینامند.
• نحوه تصویربرداری MRI
در MRI ابتدا بیمار در یک میدان مغناطیسی قوی قرار گرفته و سپس امواج رادیویی به سوی او تابیده میشود. بافتهای بدن در جواب به این موقعیت امواج رادیویی دیگری را از خود ساطع میکنند. با دریافت این امواج رادیویی که از بدن بیمار ساطع میشود و تحلیل این امواج توسط یک کامپیوتر پرقدرت، تصاویری بر روی مانیتور دستگاه ایجاد میشوند که سطوح مقطعی از اندام مورد نظر را نشان میدهند.
🔷 انواع MRI
1- MRI با وزن دهی T1
این یک روش پایه در اسکن MRI میباشد، برای مثال، در این روش تصویر سازی، تفاوت دو بافت چربی و آب، به صورت تیرهتر بودن آب نسبت به بافت چربی نمایان میشود.
2- MRI با وزن دهی T2
این روش نیز یکی از روشهای اصلی تصویر سازی MRI میباشد. در این روش نیز مانند وزندهی T1، چربی و آب قابل تفکیک بوده با این تفاوت که چربی تیرهتر و آب روشنتر در تصویر ظاهر میگردد.
✅جهت آشنایی بیشتر با تصویربرداری MRI به سایت تخصصی زیر مراجعه کنید
https://mrifarsi.ir/
لينك سوپر گروه تخصصي MRI
https://t.me/joinchat/AAAAADvxZEg5wS7DLvx6hQ
3⃣ CT Scan
فرآیندی است که یک سری تصاویر جزئی از مناطق داخل بدن، که از زوایای مختلف گرفته شدهاند، ایجاد میکند. تصاویر توسط کامپیوتری که به یک دستگاه اشعه x متصل است، ایجاد میشوند. رنگدانهای ممکن است داخل عروق تزریق شود تا به ارگانها و بافتها کمک کند واضحتر ظاهر شوند. این پروسه توموگرافی کامپیوتری نیز نامیده میشود.
4⃣ اسکن PET (توموگرافی با گسیل پوزیترون)
فرایندی جهت یافتن سلولهای تومور در بدن میباشد. مقدار کمی از گلوکز رادیواکتیو داخل رگ تزریق میشود. اسکنر PET در اطراف بدن میچرخد و یک تصویر از جاهایی از بدن که گلوکز استفاده میشود، می گیرد. سلولهای تومور بدخیم به خاطر اینکه فعالتر هستند وگلوکز بیشتری نسبت به سلولهای نرمال مصرف میکنند، در تصویر روشنتر ظاهر میشوند.
پست ادامه دارد.....
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
onlinebme
✅ ✍️ واسط مغز و رایانه BCI (brain-computer interface) چیست؟ 🔺واسط مغز و رایانه از مجموعهای از سنسورها و اجزای پردازش سیگنال تشکیل میشود که فعالیت مغزی فرد را مستقیماً به یک سری سیگنالهای ارتباطی یا کنترلی تبدیل میکند. در این سامانه ابتدا باید امواج مغزی…
✅ واسط مغز و کامپیوتر (BCI)
💡 بخش 4: معرفی سيستم رابط مغز و كامپيوتر مبتنی بر p300
👨🏫 نویسندگان: مهندس کامیار نوری- محمد نوری زاده
✍️ مجموعه كارهاي انجام شده در زمينة سيستمهاي واسط مغز-كامپيوتر جزو موضوعات تحقيقاتی روز دنياست، تا امكان ارائة محصولات كاربردي براي استفاده عمومي فراهم شود.
اساس و مبناي فناوری واسط بين انسان و ماشين استفاده از سيگنالها و پارامترهاي بيولوژيكي (بويژه سيگنالهاي مغزي) به منظور هدايت سيستمهاي كنترلي خودكار ميباشد.
❇️ کاربرد
🔺يكي از کاربردهای متداول که زمينه ساز تحقيقات فراواني در سيستم هاي BCI شده است، احساس نياز افرادي است که به نوعي در سيستم عادي ارتباط شان دچار نقص عصبي-عضلاني هستند، اما کاربرد¬هاي اين سيستم تنها براي استفاده هاي كمكي افراد معلول نيست و مي تواند وارد فضاي زندگي افراد سالم اجتماع نيز بشود.
بعنوان مثال مي توان از بازيهاي كامپيوتري نام برد كه در آن فرد از طريق ديدن تصاوير خاصي، تمرين و فعاليت مغزي انجام ميدهد و يا سيستمهاي واسطي كه شخص را قادر مي سازد به چندين روش مختلف با كامپيوتر ارتباط برقرار كند. يكي از مهمترين آنها، سيستم BCI مبتني بر P300 است.
❇️خصوصيات سيگنال P300
🔺از ميان پتانسیلهای مرتبط با رویداد (event related potentials , ERP) ، پتانسيلهاي برانگيختة بينايي (Visual Evoked Potential ,VEP) داراي کاربرد بيشتري بوده و بيش از سايرين شناخته شده هستند.
در هنگام توجه شخص به يک پديده (مثل تحريك ديداري يا شنيداري) سيگنال مثبتي در حدود ms300 بعد از وقوع پديده آشکار مي شود و هر چه دورة زماني تحريک بيشتر باشد دامنة آن بزرگتر خواهد بود و با خسته شدن فرد دامنه کاهش ميابد، که آنرا تحت عنوان P300 مي شناسيم.
به عبارت دیگر، بعد از اینکه یک تحریک دیداری(تصویر) برای شخص نمایش داده می شود و شخص به آن توجه می کند، یک پتانسیل مربوط به رویداد ایجاد میشود که بعد از 300 میلی ثانیه و یا بیشتر(تا 900 میلی ثانیه) به پیک میرسد.
#واسط_مغزوکامپیوتر
#پردازش_سیگنال
#ERP
#P300
#BCI
پست ادامه دارد.....
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
💡 بخش 4: معرفی سيستم رابط مغز و كامپيوتر مبتنی بر p300
👨🏫 نویسندگان: مهندس کامیار نوری- محمد نوری زاده
✍️ مجموعه كارهاي انجام شده در زمينة سيستمهاي واسط مغز-كامپيوتر جزو موضوعات تحقيقاتی روز دنياست، تا امكان ارائة محصولات كاربردي براي استفاده عمومي فراهم شود.
اساس و مبناي فناوری واسط بين انسان و ماشين استفاده از سيگنالها و پارامترهاي بيولوژيكي (بويژه سيگنالهاي مغزي) به منظور هدايت سيستمهاي كنترلي خودكار ميباشد.
❇️ کاربرد
🔺يكي از کاربردهای متداول که زمينه ساز تحقيقات فراواني در سيستم هاي BCI شده است، احساس نياز افرادي است که به نوعي در سيستم عادي ارتباط شان دچار نقص عصبي-عضلاني هستند، اما کاربرد¬هاي اين سيستم تنها براي استفاده هاي كمكي افراد معلول نيست و مي تواند وارد فضاي زندگي افراد سالم اجتماع نيز بشود.
بعنوان مثال مي توان از بازيهاي كامپيوتري نام برد كه در آن فرد از طريق ديدن تصاوير خاصي، تمرين و فعاليت مغزي انجام ميدهد و يا سيستمهاي واسطي كه شخص را قادر مي سازد به چندين روش مختلف با كامپيوتر ارتباط برقرار كند. يكي از مهمترين آنها، سيستم BCI مبتني بر P300 است.
❇️خصوصيات سيگنال P300
🔺از ميان پتانسیلهای مرتبط با رویداد (event related potentials , ERP) ، پتانسيلهاي برانگيختة بينايي (Visual Evoked Potential ,VEP) داراي کاربرد بيشتري بوده و بيش از سايرين شناخته شده هستند.
در هنگام توجه شخص به يک پديده (مثل تحريك ديداري يا شنيداري) سيگنال مثبتي در حدود ms300 بعد از وقوع پديده آشکار مي شود و هر چه دورة زماني تحريک بيشتر باشد دامنة آن بزرگتر خواهد بود و با خسته شدن فرد دامنه کاهش ميابد، که آنرا تحت عنوان P300 مي شناسيم.
به عبارت دیگر، بعد از اینکه یک تحریک دیداری(تصویر) برای شخص نمایش داده می شود و شخص به آن توجه می کند، یک پتانسیل مربوط به رویداد ایجاد میشود که بعد از 300 میلی ثانیه و یا بیشتر(تا 900 میلی ثانیه) به پیک میرسد.
#واسط_مغزوکامپیوتر
#پردازش_سیگنال
#ERP
#P300
#BCI
پست ادامه دارد.....
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
matlabkhoone.ir
فروش MatlabKhoone، مطلب خونه
دامنه به بهترین قیمت
onlinebme
✅ واسط مغز و کامپیوتر (BCI) 💡 بخش 4: معرفی سيستم رابط مغز و كامپيوتر مبتنی بر p300 👨🏫 نویسندگان: مهندس کامیار نوری- محمد نوری زاده ✍️ مجموعه كارهاي انجام شده در زمينة سيستمهاي واسط مغز-كامپيوتر جزو موضوعات تحقيقاتی روز دنياست، تا امكان ارائة محصولات كاربردي…
❇️ منشأ توليد P300
✍️ پژوهشگران در تمامي مطالعات انجام شده، سيگنالهاي ERP را برجسته ترين موج در بين مؤلفه هاي شناختي سيگنالهاي مغزي ميدانند. مؤلفه P300يك نوع خاص از سيگنالهاي ERP است كه در شرايط خاصي ظاهر ميشود.
🔺طبق تحقيقات انجام شده، هنگامي كه مغز در حين پردازش دنبالهای از تحريكات معمول، به يك تحريك غيرمعمول (تحريك هدف-target) بر ميخورد، يك موج P300 در سيگنال مغزي ثبت شده ظاهر ميشود. غالباً براي فرد مورد آزمايش در مطالعات P300 ، وظيفه(task) خاصي تعريف ميشود بطوريكه شخص میبايست فقط در پاسخ به تحريك هدف آنرا انجام دهد، مثلاً از وي خواسته ميشود تا تعداد تحريكات غير معمول را بشمارد. برخي از محققين عقيده دارند كه P300 ، پاسخ به يك رخداد داخلي ناشي از فعاليت شناختي است و انجام كار خارجي در توليد آن نقش مهمی ندارد. در ميان مؤلفههاي يک ERP، P300 از پايدارترين و قويترين و قابل اعتمادترين پتانسيلها در ميان پتانسيلهاي ERP است.
🔺از لحاظ فيزيكي، P300 داراي قطبيت مثبت و دامنة حدود ۱۰ تا ۱۵ ميكروولت (در افراد جوان) است كه مشاهده آن به همراه EEG زمينه با يك بار ثبت گرفتن، سخت و حتی غيرممکن است و نياز به روشهاي پردازشي خاصي دارد كه معمولترين آنها تكرار تحريك و متوسطگيري است.
🔺 براي تحريكهاي صوتي، ميزان تأخير موج P300 بطور متوسط حدود 300 ميليثانيه است كه دليل انتخاب نام P300 نيز به علت قطبيت مثبت و تأخير 300 ميليثانيهای آن است. ولي براي تحريكات ديگر همانند تحريك تصويري، اين زمان ممكن است تا حدود 100 ميلي ثانيه ديگر هم افزايش يابد. به هر حال اين موج P300 ناميده ميشود و برای شناسايي آن محدوده زمانی 200 تا 800 ميلي ثانيه را جستجو میکنند.
🔺 در اغلب كارهاي انجام شده در زمينة P300 از نظرموقعيت مكاني، سيگنال از سه كانال موجود روي خط وسط سر يعني Pz ، Cz و Fz ثبت شده است. تحقيقات نشان داده است در اغلب موارد P300، داراي بيشترين دامنه در ناحيه آهيانهای parietal (محل الكترود Pz) و كمترين دامنه در ناحيه پيشانی_frontal (محل الكترود Fz) است (Pz>Cz>Fz). هر چند كه در اغلب كاربردهاي BCI در حالت تك كاناله، كانال Cz را انتخاب مي كنند
جهت اطلاعات بیشتر میتوانید مقاله زیر را مطالعه کنید:
http://journals.sagepub.com/doi/abs/10.1177/1073858405280524
#واسط_مغزوکامپیوتر
#پردازش_سیگنال
#ERP
#P300
#BCI
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric
✍️ پژوهشگران در تمامي مطالعات انجام شده، سيگنالهاي ERP را برجسته ترين موج در بين مؤلفه هاي شناختي سيگنالهاي مغزي ميدانند. مؤلفه P300يك نوع خاص از سيگنالهاي ERP است كه در شرايط خاصي ظاهر ميشود.
🔺طبق تحقيقات انجام شده، هنگامي كه مغز در حين پردازش دنبالهای از تحريكات معمول، به يك تحريك غيرمعمول (تحريك هدف-target) بر ميخورد، يك موج P300 در سيگنال مغزي ثبت شده ظاهر ميشود. غالباً براي فرد مورد آزمايش در مطالعات P300 ، وظيفه(task) خاصي تعريف ميشود بطوريكه شخص میبايست فقط در پاسخ به تحريك هدف آنرا انجام دهد، مثلاً از وي خواسته ميشود تا تعداد تحريكات غير معمول را بشمارد. برخي از محققين عقيده دارند كه P300 ، پاسخ به يك رخداد داخلي ناشي از فعاليت شناختي است و انجام كار خارجي در توليد آن نقش مهمی ندارد. در ميان مؤلفههاي يک ERP، P300 از پايدارترين و قويترين و قابل اعتمادترين پتانسيلها در ميان پتانسيلهاي ERP است.
🔺از لحاظ فيزيكي، P300 داراي قطبيت مثبت و دامنة حدود ۱۰ تا ۱۵ ميكروولت (در افراد جوان) است كه مشاهده آن به همراه EEG زمينه با يك بار ثبت گرفتن، سخت و حتی غيرممکن است و نياز به روشهاي پردازشي خاصي دارد كه معمولترين آنها تكرار تحريك و متوسطگيري است.
🔺 براي تحريكهاي صوتي، ميزان تأخير موج P300 بطور متوسط حدود 300 ميليثانيه است كه دليل انتخاب نام P300 نيز به علت قطبيت مثبت و تأخير 300 ميليثانيهای آن است. ولي براي تحريكات ديگر همانند تحريك تصويري، اين زمان ممكن است تا حدود 100 ميلي ثانيه ديگر هم افزايش يابد. به هر حال اين موج P300 ناميده ميشود و برای شناسايي آن محدوده زمانی 200 تا 800 ميلي ثانيه را جستجو میکنند.
🔺 در اغلب كارهاي انجام شده در زمينة P300 از نظرموقعيت مكاني، سيگنال از سه كانال موجود روي خط وسط سر يعني Pz ، Cz و Fz ثبت شده است. تحقيقات نشان داده است در اغلب موارد P300، داراي بيشترين دامنه در ناحيه آهيانهای parietal (محل الكترود Pz) و كمترين دامنه در ناحيه پيشانی_frontal (محل الكترود Fz) است (Pz>Cz>Fz). هر چند كه در اغلب كاربردهاي BCI در حالت تك كاناله، كانال Cz را انتخاب مي كنند
جهت اطلاعات بیشتر میتوانید مقاله زیر را مطالعه کنید:
http://journals.sagepub.com/doi/abs/10.1177/1073858405280524
#واسط_مغزوکامپیوتر
#پردازش_سیگنال
#ERP
#P300
#BCI
🌀 کاری از گروه تخصصی و آموزشی دانشجویان دانشگاه علم و صنعت تهران
✅ برگزار کننده دوره های #تخصصی و #پروژه_محور مهندسی پزشکی و برق
🌐 مطالب و ویدیوهای آموزشی #رایگان ما را از #سایت متلبخونه هم میتونید دنبال کنید:👇👇
http://matlabkhoone.ir/
➖➖➖➖➖
@IUST_Bioelecteric