Forwarded from DLStories
Помните AlphaFold? Это нейросеть от DeepMind, которая может предсказывать структуру белков. Это очень-очень важный прорыв для медицины. Почему это так, мы писали тут: обязательно почитайте, если еще не.
#tech
Сегодня расскажем о похожей разработке: нейросети Peptimizer для поиска высокоэффективных абиотических минипротеинов.
Минипротеины часто используются в лекарствах как энхансеры — вещества, которые помогают основному лекарству лучше проникать в нужные клетки. К примеру, препарат для лечения мышечной дистрофии Дюшенна (DMD) использует большие синтетические молекулы PMO, которые проникают в ядро клетки и модифицируют ген дистрофина так, чтобы запустить выработку белков, которые отсутствуют у пациентов с DMD. Молекулы PMO при этом обладают низкой способностью проникать в клетки, и для улучшения доставки лекарства к молекуле PMO прикрепляются минипротеины, которые улучшают проходимость.
Задача поиска лучших минипротеинов для улучшения проходимости — сложная. Количество возможных последовательностей аминокислот, которые образуют протеины — миллиарды. Этим задача похожа на ту, что решала AlphaFold — она не решается так просто в лабораборных условиях биологами.
По результатам тестов Peptimizer справляется со своей задачей: предложенные ей минипротеины нетоксичны (а значит, могут быть использованы в лекарствах) и действительно улучшают проникаемость лекарства в клетки. Один из предложенных минипротеинов увеличил эффективность доставки лекарства в эксперименте на мышах в 50 раз!
Кроме того, устройство нейросети Peptimizer такое, что ислледователи могут интерпретировать структуры протеинов, предложенных моделью. Это очень важно для медицины: нельзя вкалывать людям вещества, о которых биологи не понимают, что они есть такое.
Очень надеемся, что таких ИИ разработок в медицине станет больше❤️
Подробнее про Peptimizer и лечение мышечной дистрофии читайте в блогпосте MIT.
GitHub с кодом: тык
Статья в Nature: тык
#tech
Сегодня расскажем о похожей разработке: нейросети Peptimizer для поиска высокоэффективных абиотических минипротеинов.
Минипротеины часто используются в лекарствах как энхансеры — вещества, которые помогают основному лекарству лучше проникать в нужные клетки. К примеру, препарат для лечения мышечной дистрофии Дюшенна (DMD) использует большие синтетические молекулы PMO, которые проникают в ядро клетки и модифицируют ген дистрофина так, чтобы запустить выработку белков, которые отсутствуют у пациентов с DMD. Молекулы PMO при этом обладают низкой способностью проникать в клетки, и для улучшения доставки лекарства к молекуле PMO прикрепляются минипротеины, которые улучшают проходимость.
Задача поиска лучших минипротеинов для улучшения проходимости — сложная. Количество возможных последовательностей аминокислот, которые образуют протеины — миллиарды. Этим задача похожа на ту, что решала AlphaFold — она не решается так просто в лабораборных условиях биологами.
По результатам тестов Peptimizer справляется со своей задачей: предложенные ей минипротеины нетоксичны (а значит, могут быть использованы в лекарствах) и действительно улучшают проникаемость лекарства в клетки. Один из предложенных минипротеинов увеличил эффективность доставки лекарства в эксперименте на мышах в 50 раз!
Кроме того, устройство нейросети Peptimizer такое, что ислледователи могут интерпретировать структуры протеинов, предложенных моделью. Это очень важно для медицины: нельзя вкалывать людям вещества, о которых биологи не понимают, что они есть такое.
Очень надеемся, что таких ИИ разработок в медицине станет больше❤️
Подробнее про Peptimizer и лечение мышечной дистрофии читайте в блогпосте MIT.
GitHub с кодом: тык
Статья в Nature: тык
Блогер подключил ChatGPT к своему мозгу
В видео довольно подробно описывается эксперимент, в котором компактное устройство для анализа активности мозга (ЭЭГ) было подключено к ИИ (GPT-4).
Эксперимент успешно продемонстрировал возможность использования JavaScript для интерпретации активности мозговых волн и создания связного текста.
Эта технология может привести к разработке более сложных систем интерфейса мозг-компьютер в будущем.
Видео
В видео довольно подробно описывается эксперимент, в котором компактное устройство для анализа активности мозга (ЭЭГ) было подключено к ИИ (GPT-4).
Эксперимент успешно продемонстрировал возможность использования JavaScript для интерпретации активности мозговых волн и создания связного текста.
Эта технология может привести к разработке более сложных систем интерфейса мозг-компьютер в будущем.
Видео
YouTube
I literally connected my brain to GPT-4 with JavaScript
I hacked my brain with a compact electroencephalogram (EEG) and connected it to GPT-4 with the OpenAI API. In this crazy tutorial, you'll learn how to use JavaScript to read your brainwaves.
#tech #javascript #science
💬 Chat with Me on Discord
https…
#tech #javascript #science
💬 Chat with Me on Discord
https…