Тут в статье A Recipe For Arbitrary Text Style Transfer with Large Language Models предложили прикольный рецепт для авто-аугментации текста в режиме Few-Shot. Берем затравку как на картинке, а дальше начинаем фантазировать. У меня получилось (курсивом на вход, жирным на выход):
1. {I need to go to the bathroom}. Here is a rewrite of the text, which is more like a geoscientist: {A huge volume of rock, called a pluton, is pushed up rapidly into the Earth's crust}.
2. {Мне нужно в туалет}. Here is
a rewrite of the text, which is more like a president: {Мне не нужно в туалет}
3. {Give me a BigMac and some chips}. Here is a rewrite of the text, which is more like a CEO of Burger King: {Let's start a BurgerKing store in my neighborhood}
Ну вы поняли идею =) Много крутых примеров тут. А попробовать самим можно в ElutherAI GPT-J (GPT-3 для бедных) на их интеркативном демо-сайте. Делитесь в комментах что получилось!
#gpt #generative #fewshot #nlp
1. {I need to go to the bathroom}. Here is a rewrite of the text, which is more like a geoscientist: {A huge volume of rock, called a pluton, is pushed up rapidly into the Earth's crust}.
2. {Мне нужно в туалет}. Here is
a rewrite of the text, which is more like a president: {Мне не нужно в туалет}
3. {Give me a BigMac and some chips}. Here is a rewrite of the text, which is more like a CEO of Burger King: {Let's start a BurgerKing store in my neighborhood}
Ну вы поняли идею =) Много крутых примеров тут. А попробовать самим можно в ElutherAI GPT-J (GPT-3 для бедных) на их интеркативном демо-сайте. Делитесь в комментах что получилось!
#gpt #generative #fewshot #nlp
Efficient Nearest Neighbor Language Models
Непараметрические нейролингвистические модели (NLM) изучают прогностические распределения текста, используя внешнее хранилище данных, что позволяет им обучаться за счет явного запоминания сэмплов. Несмотря на свою эффективность, эти модели часто требуют извлечения данных из большого хранилища во время тестирования, что значительно увеличивает накладные расходы на вывод и, таким образом, ограничивает применение непараметрических NLM в практических приложениях. Авторы предлагают эффеективную версию модели. Эксперименты на стандартном бэнчмарке WikiText-103 и наборе данных для адаптации к домену показывают, что их методы методы позволяют добиться 6-кратного увеличения скорости вывода при сохранении сопоставимой производительности. Представленный авторами эмпирический анализ может послужить руководством для будущих исследований, направленных на разработку или внедрение более эффективных непараметрических NLM.
Статья
Код
#nlp #knn #inference
Непараметрические нейролингвистические модели (NLM) изучают прогностические распределения текста, используя внешнее хранилище данных, что позволяет им обучаться за счет явного запоминания сэмплов. Несмотря на свою эффективность, эти модели часто требуют извлечения данных из большого хранилища во время тестирования, что значительно увеличивает накладные расходы на вывод и, таким образом, ограничивает применение непараметрических NLM в практических приложениях. Авторы предлагают эффеективную версию модели. Эксперименты на стандартном бэнчмарке WikiText-103 и наборе данных для адаптации к домену показывают, что их методы методы позволяют добиться 6-кратного увеличения скорости вывода при сохранении сопоставимой производительности. Представленный авторами эмпирический анализ может послужить руководством для будущих исследований, направленных на разработку или внедрение более эффективных непараметрических NLM.
Статья
Код
#nlp #knn #inference
Forwarded from Data Science by ODS.ai 🦜
Summarizing Books with Human Feedback
#OpenAI fine-tuned #GPT3 to summarize books well enough to be human-readable. Main approach: recursively split text into parts and then meta-summarize summaries.
This is really important because once there will be a great summarization #SOTA we won't need editors to write posts for you. And researchers ultimatively will have some asisstance interpreting models' results.
BlogPost: https://openai.com/blog/summarizing-books/
ArXiV: https://arxiv.org/abs/2109.10862
#summarization #NLU #NLP
#OpenAI fine-tuned #GPT3 to summarize books well enough to be human-readable. Main approach: recursively split text into parts and then meta-summarize summaries.
This is really important because once there will be a great summarization #SOTA we won't need editors to write posts for you. And researchers ultimatively will have some asisstance interpreting models' results.
BlogPost: https://openai.com/blog/summarizing-books/
ArXiV: https://arxiv.org/abs/2109.10862
#summarization #NLU #NLP
This media is not supported in your browser
VIEW IN TELEGRAM
CLIPort
Рисовать картинки с помощью CLIP и GAN было весело. А теперь у CLIP нашлось новое, асболютно бомбическое применение! Оказалось, что CLIP можно использовать для того что бы давать команды манипулятору.
В работе CLIPort (загляните на сайт, там много красивых примеров) предлагают сетку которая понимает команды данные на человеческом языке, при этом робот не ограничен каким-то заранее известным набором команд и способен “понимать” чего от него хотят!
Статья
Код
#CLIP #robots #NLP #multimodal
Рисовать картинки с помощью CLIP и GAN было весело. А теперь у CLIP нашлось новое, асболютно бомбическое применение! Оказалось, что CLIP можно использовать для того что бы давать команды манипулятору.
В работе CLIPort (загляните на сайт, там много красивых примеров) предлагают сетку которая понимает команды данные на человеческом языке, при этом робот не ограничен каким-то заранее известным набором команд и способен “понимать” чего от него хотят!
Статья
Код
#CLIP #robots #NLP #multimodal
Filling the Gaps in Ancient Akkadian Texts: A Masked Language Modelling Approach
Тут запилили модель, которая дополняет недостающий текст транслитерациями древних месопотамских манускриптов, первоначально написанных на клинописных глиняных табличках (2500 г. до н. э. - 100 г. н. э.). Из-за порчи табличек ученые часто полагаются на контекст, чтобы вручную заполнить недостающие части текста (субъективный и трудоемкий процесс).
Авторы определили, что эта задача может быть сформулирована как задача моделирования языка по маске (masked language model). Были разработаны несколько моделей, сфокусированных на аккадском языке, лингва-франка того времени. Для предварительного обучения использовали данные из других языков и различных временных периодов.
Наконец, они проводят оценку на людях, демонстрируя применимость их моделей для помощи экспертам в расшифровке текстов на вымерших языках.
#ScientificML #nlp #linguistics #history
Тут запилили модель, которая дополняет недостающий текст транслитерациями древних месопотамских манускриптов, первоначально написанных на клинописных глиняных табличках (2500 г. до н. э. - 100 г. н. э.). Из-за порчи табличек ученые часто полагаются на контекст, чтобы вручную заполнить недостающие части текста (субъективный и трудоемкий процесс).
Авторы определили, что эта задача может быть сформулирована как задача моделирования языка по маске (masked language model). Были разработаны несколько моделей, сфокусированных на аккадском языке, лингва-франка того времени. Для предварительного обучения использовали данные из других языков и различных временных периодов.
Наконец, они проводят оценку на людях, демонстрируя применимость их моделей для помощи экспертам в расшифровке текстов на вымерших языках.
#ScientificML #nlp #linguistics #history
Too long; didn’t read
Вы прочитали картинку? Большинство из вас скорее всего прочитали только нижнюю часть, и то наискосок.
TLDR9+ - масштабный набор данных для обобщения, содержащий более 9 миллионов учебных примеров, извлеченных из дискуссионного форума Reddit. Этот набор данных специально собран для выполнения экстремального обобщения (т.е. генерации резюме из одного предложения с высокой степенью сжатия и абстракции).
Скорее бы появилось что-то в открытом доступе, а то сколько можно статей то в день прочитать :)
Датасет
#datasets #nlp #summarization
Вы прочитали картинку? Большинство из вас скорее всего прочитали только нижнюю часть, и то наискосок.
TLDR9+ - масштабный набор данных для обобщения, содержащий более 9 миллионов учебных примеров, извлеченных из дискуссионного форума Reddit. Этот набор данных специально собран для выполнения экстремального обобщения (т.е. генерации резюме из одного предложения с высокой степенью сжатия и абстракции).
Скорее бы появилось что-то в открытом доступе, а то сколько можно статей то в день прочитать :)
Датасет
#datasets #nlp #summarization
Model-based analysis of brain activity reveals the hierarchy of language in 305 subjects
Интересная статья от авторов из Facebook AI и 2х Парижских университетов, про то как можно воспользоваться большими языковыми моделями для изучения корреляции между человеческой речью и активными зонами мозга. Хотя результаты у меня пока вызывают сомнение, посмотрим опубликуют ли вообще такое.
📎Статья
#ScientificML #nlp #biology
Интересная статья от авторов из Facebook AI и 2х Парижских университетов, про то как можно воспользоваться большими языковыми моделями для изучения корреляции между человеческой речью и активными зонами мозга. Хотя результаты у меня пока вызывают сомнение, посмотрим опубликуют ли вообще такое.
📎Статья
#ScientificML #nlp #biology
OpenAI добавила возможность получать эмбеддинги текста или кода напрямую из своего API
Эмбеддинги - это числовые представления каких-то понятий (например слов или кусочков кода), преобразованные в последовательности чисел (например [1.,…,2.]), которые облегчают компьютеру понимание отношений между этими понятиями.
Эмбеддинги полезны при работе с естественным языком и кодом, поскольку их можно легко использовать и сравнивать с другими моделями машинного обучения и алгоритмами, такими как кластеризация или поиск.
То есть получается, берём например текст -> прогоняем его через OpenAI API -> получаем эмбеддинг -> и можем его использовать с любыми моделями машинного обучения (не только с OpenAI, а то получилось бы еще одна «экосистема» по типу Apple).
Для тех, кто потихонечку вкатывается в NLP рекомендую почитать блог-пост. Там простым и понятным языком написано.
📸 Блог-пост
📎 Статья
#gpt #nlp #basics
Эмбеддинги - это числовые представления каких-то понятий (например слов или кусочков кода), преобразованные в последовательности чисел (например [1.,…,2.]), которые облегчают компьютеру понимание отношений между этими понятиями.
Эмбеддинги полезны при работе с естественным языком и кодом, поскольку их можно легко использовать и сравнивать с другими моделями машинного обучения и алгоритмами, такими как кластеризация или поиск.
То есть получается, берём например текст -> прогоняем его через OpenAI API -> получаем эмбеддинг -> и можем его использовать с любыми моделями машинного обучения (не только с OpenAI, а то получилось бы еще одна «экосистема» по типу Apple).
Для тех, кто потихонечку вкатывается в NLP рекомендую почитать блог-пост. Там простым и понятным языком написано.
📸 Блог-пост
📎 Статья
#gpt #nlp #basics
Пока все спорят о том что такое сознание, и есть ли оно в больших языковых моделях, предлагаю сосредоточится на более научной дискуссии.
ArgSciChat - это набор данных аргументированных диалогов. Он состоит из 498 сообщений, собранных из обсуждения 20 научных статей.
Датасет может быть использован для оценки разговорных агентов и дальнейшего стимулирования исследований в области аргументированных научных агентов.
🗂 Датасет
#ScientificML #nlp #datasets
ArgSciChat - это набор данных аргументированных диалогов. Он состоит из 498 сообщений, собранных из обсуждения 20 научных статей.
Датасет может быть использован для оценки разговорных агентов и дальнейшего стимулирования исследований в области аргументированных научных агентов.
🗂 Датасет
#ScientificML #nlp #datasets