Новая модель машинного обучения позволяет использовать потенциал спутниковых данных для решения проблем
За последние несколько десятилетий спутниковая съемка стала все более популярной как важный инструмент для понимания социальных, экономических и экологических проблем во всем мире. К сожалению, многие ученые не могут применить спутниковые исследования в своей работе из-за высоких затрат на внедрение. В дополнение к высоким первоначальным затратам, регионы, испытывающие недостаток данных, не имеют финансовых или технологических средств для проверки или анализа полученных данных. MOSAIKS - это программа компьютерного зрения, которая использует self-supervised машинное обучение для превращения необработанных спутниковых изображений в пригодную для использования информацию. Организации выигрывают от использования этого программного обеспечения за счет снижения накладных расходов и необходимости сбора меньшего количества данных. MOSAIKS добивается успеха, сочетая машинное обучение с существующими вычислительными платформами. Новое исследование в журнале Nature Communications предоставляет бедным данными регионам по всему миру возможность анализировать богатые данными спутниковые снимки с помощью простого и быстрого машинного обучения. В статье описывается, как исследователи из "бедных данными регионов" могут получить доступ к глобальному обсуждению экологических/экономических/социальных проблем с помощью модели машинного обучения.
Блог-пост
#ScientificML #earth_science #images #SSL
За последние несколько десятилетий спутниковая съемка стала все более популярной как важный инструмент для понимания социальных, экономических и экологических проблем во всем мире. К сожалению, многие ученые не могут применить спутниковые исследования в своей работе из-за высоких затрат на внедрение. В дополнение к высоким первоначальным затратам, регионы, испытывающие недостаток данных, не имеют финансовых или технологических средств для проверки или анализа полученных данных. MOSAIKS - это программа компьютерного зрения, которая использует self-supervised машинное обучение для превращения необработанных спутниковых изображений в пригодную для использования информацию. Организации выигрывают от использования этого программного обеспечения за счет снижения накладных расходов и необходимости сбора меньшего количества данных. MOSAIKS добивается успеха, сочетая машинное обучение с существующими вычислительными платформами. Новое исследование в журнале Nature Communications предоставляет бедным данными регионам по всему миру возможность анализировать богатые данными спутниковые снимки с помощью простого и быстрого машинного обучения. В статье описывается, как исследователи из "бедных данными регионов" могут получить доступ к глобальному обсуждению экологических/экономических/социальных проблем с помощью модели машинного обучения.
Блог-пост
#ScientificML #earth_science #images #SSL
Nature
A generalizable and accessible approach to machine learning with global satellite imagery
Nature Communications - This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across...