AI Для Всех
12.8K subscribers
1.17K photos
153 videos
10 files
1.38K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
MolGpka: A Web Server for Small Molecule pKa Prediction Using a Graph-Convolutional Neural Network

Точная и быстрая оценка pKa малых молекул жизненно важна в процессе поиска лекарств. Авторы представляют MolGpKa, веб-сервер для предсказания pKa с помощью граф-конволюционной нейросетевой модели.

Модель работает путем автоматического изучения химических паттернов, связанных с pKa, и построения надежных предикторов с использованием изученных характеристик.

UPDATE
В то время как как возможный пример применения статья подходит, сама по себе она сделана максимально халтурно.

Самое главное - предсказываются не сами pKa, а pKa, которые уже ПРЕДСКАЗАНЫ. Ибо экспериментальных данных мало, ага.

Валидируются они на экспериментальных датасетах, где, внезапно, показывают качество похожее на качество уже известных методов предсказания pKa (не правда ли - удивительно(( ).
При этом разбиение на train и test оставляет вопросы. Они пишут, что удалили вещества, которые есть в тесте из датасета. Но удалили ли они вещества, отличающиеся на один незначимый заместитель? Из их текста это не следует, построенные гистограммы расстояний ввеществ из экспериментального датасета до обучения неинформативны - их никак не отнормировали на тот факт, что есть огромное число веществ, которые непохожи на тест.
В итоге хвост распределения - сколько похожих - не видно. А хватит и по одному на каждое вещество из теста.

Эта работа позволяет получить дифференцируемое предсказание, казалось бы. Но на вход-то нейросеть принимает описание, которое составляется детерминированным алгоритмом, который еще и исходную структуру модифицирует пуутем удаления части фрагментов.
Потому приделать эту нейросеть в качестве дискриминатора для случая, когда вы хотите генерить вещества с заданным pKa тоже не получится.

Статья
Веб-Сервер

#ScientificML #chemistry #graphs
PyTorch Geometric

PyG (PyTorch Geometric) - это библиотека, созданная на основе PyTorch для простого написания и обучения графовых нейронных сетей (GNN) для широкого спектра приложений, связанных со структурированными данными.

Она включает в себя различные методы глубокого обучения на графах и других нерегулярных структурах из множества опубликованных работ. Кроме того, в состав входят простые в использовании dataloaders, поддержка нескольких GPU, большое количество общих бэнчмарков, менеджер экспериментов GraphGym, а также полезные преобразования, как для обучения на произвольных графах, так и на 3D-сетках или облаках точек.

👩‍💻 Код 📝 Документация
🏀 Colab 📝 Статья

#graphs #gnn
Molecule3D - это новый датасет с точными геометриями основного состояния приблизительно 4 миллионов молекул, полученных на основе density functional theory (DFT).

Датасет также снабжён набор программных инструментов для обработки данных, разбиения, обучения, оценки и т.д.

Датасет
Статья

#ScientificML #graphs #chemistry #datasets
Обновления по графовым сетям, которые сейчас активно исследуются для биологических и химических целей.

(1) На YouTube выложили лекцию профессора Макса Веллинга (Max Welling) по графовым нейронным сетям для симуляции молекул.

(2) умельцы собрали Colab блокнот по обучению графовой нейронной сети для классификации молекул на основе их биологической активности. В блокноте разбираются аспекты использования Jraph (JAX библиотеки для графов).

#ScientificML #gnn #graphs #biology #chemistry
Изучаем графовые нейросети

Ох, как бы я хотел что бы этот ресурс появился неделю назад. Но лучше поздно, чем никогда. Отличное занятие на этот томный воскресный день.

Учимся

#gnn #graphs