AI Для Всех
12.8K subscribers
1.17K photos
152 videos
10 files
1.37K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
Большая и поучительная история как AI не помог в борьбе с пандемией. Почему так вышло? Кто виноват? И что делать?

Если совсем кратко - то «garbage in - garbage out” (подаёшь мусорные данные на вход - получаешь мусорные предсказания на выходе)

Видео-разбор

#science #ScientificML #medicine
Где машинка применяется в drug design
Довольно по верхам имхо. Только общее представление получить.

И, да, генерация молекул упоминается.

YouTube
NeurIPS

#ScientificML #medicine
Ну или вот талк от главы Insilico Medicine. Про то, как у них пайплайн по разработке лекарств работает
Про longevity я бы не слушал, но это у меня аллергия.

YouTube

#ScientificML #medicine
MedCLIP

Позволяет осуществлять поиск по медицинским изображениям.

Поиграть можно тут 👉
Онлайн-демо

#CLIP #images #medicine #multimodal #demo
Анализ гистопатологических изображений

Репозиторий посвящен использованию машинного обучения для обработки гистопатологических изображений. Все модели сделаны на PyTorch и протестированы на множестве клинически значимых задач.

#ScientificML #medicine #biology
#ScientificML #medicine #biology #transformer #classification #mlp #smalldataset #datasets

Была статья в 2020 о том, что на самом деле attention transformer - это современная хопфилдовская сеть, которая сходится за один шаг. Что дает такая идея - в современных хопфилдовских сетях есть часть, которая, фактически, хранит наиболее "харизматичные" паттерны из выборки.

По сути - то, что мы в явном виде делаем для SVM. В нем опорные вектора - это как раз самые важные для классификации объекты, с которыми мы сравниваем поступивший на вход новый объект. Именно потому, кстати, SVM можно рассматривать как очень хитрый KNN (особенно если SVM набрала в опорные вектора всю обучающую выборку, что у меня в задаче происходит).

На основе этой интуиции авторы, выпустили статью с применением хопфилдовских сетей для классификации immune repertoire человека. К сложности этой задачи относится то, что размерность входного объекта в разы больше, чем число объектов, которые можно собрать в обозримое время. То есть нужна модель с довольно жесткой регуляризацией, иначе все переобучится.

Статья в принципе интересная, однако прям видно, что выучивается что-то типо SVM (качество нейросети не отличается значимо от созданной под эти цели SVM, смотрите таблицу 1 в статье). При этом понятно, что бонус нейросетевого решения - возможность transfer learning и в принципе шкалируемость метода. Ибо SVM работает на больших датасетах очень долго.

Но как бы сделать все очень тупо и просто, но в виде attention? Авторы новой статьи предлагают решить это просто - пусть теперь key и values в наших слоях будут не вычисляться динамически на основе входных данных, а будут обучаемыми весами.
В идеале эти веса как раз и выучат паттерны и соответствующими им характеристики, нужные для решения задачи.
Кроме этого, бонусом идет то, что число паттернов можно ставить
1) не очень большое (у авторов работают значения k = 64)
2) сложность вычисления на слоях кроме первого в начинает зависеть от длины входной последовательности только линейно

Для части задач у авторов получается хорошее качество, сравнимое с state-of-the-art. При этом в идеале можно из выучиваемых весов вытаскивать какие-то инсайты по решаемой задаче.
TorchDrug

TorchDrug - это фреймворк машинного обучения, разработанный для поиска лекарств. Включает в себя методы от графового машинного обучения (графовые нейронные сети, геометрическое глубокое обучение), глубоких генеративных моделей до обучения с подкреплением. TorchDrug предоставляет комплексный и гибкий интерфейс для поддержки быстрого создания прототипов моделей для поиска лекарств в PyTorch.

Сайт
GitHub

#ScientificML #medicine #chemistry #biology
Kipoi - model zoo for genomics

Интересный репозиторий с нейронными сетями в биологии. Есть пара архитектур из хороших статей. Репозиторий обновляется нечасто, непонятно, насколько инициатива жива. Например, в коде одной нейросети можно встретить Variable из pytorch (deprecated уже года 4 как). А статью по этой штуке хотели писать в 2018(

GitHub

#ScientificML #biology #dna #medicine
MedMNIST

Для тех, кому не хватает MNIST-like наборов данных, на днях опубликовали MedMNIST v2. 12 наборов с 2D изображениями и 6 наборов с 3D (28x28x28). Все изображения под лицензией Creative Commons. Есть обертка для простого использования с PyTorch.

Сайт
GitHub

#datasets #images #medicine #3d #ScientificML
Kaggle: Brain Tumor Radiogenomic Classification

Цель этой задачи - предсказать состояние генетического биомаркера, важного для лечения рака мозга.

Каждый независимый случай имеет специальную папку, обозначенную пятизначным номером. В каждой из этих папок "case" есть четыре подпапки, каждая из которых соответствует каждому из структурных мультипараметрических МРТ (mpMRI) сканов в формате DICOM.

GitHub
Блокнот с решением на Kaggle

#datasets #demo #3d #ScientificML #images #medicine