Deep physical neural networks trained with backpropagation.
Глубокое обучение уже повсюду. Однако, оно присутствует только в виде кода. Исследователи предложили делать бэкпроп сразу на физических приборах (обучение с учетом физики). Подобно тому, как глубокое обучение реализует вычисления с помощью глубоких нейронных сетей, состоящих из слоев математических функций, этот подход позволяет обучать глубокие физические нейронные сети, состоящие из слоев управляемых физических систем.
Коллектив авторов обучил различные физические нейронные сети, основанные на оптике, механике и электронике, для экспериментального выполнения задач классификации аудио и изображений. Физические нейронные сети способны выполнять машинное обучение быстрее и более энергоэффективно, чем обычные электронные процессоры, и, в более широком смысле, могут наделять физические системы автоматически создаваемыми физическими функциями, например, для робототехники, материалов и интеллектуальных датчиков.
📎 Статья
#physics #chip #hardware
Глубокое обучение уже повсюду. Однако, оно присутствует только в виде кода. Исследователи предложили делать бэкпроп сразу на физических приборах (обучение с учетом физики). Подобно тому, как глубокое обучение реализует вычисления с помощью глубоких нейронных сетей, состоящих из слоев математических функций, этот подход позволяет обучать глубокие физические нейронные сети, состоящие из слоев управляемых физических систем.
Коллектив авторов обучил различные физические нейронные сети, основанные на оптике, механике и электронике, для экспериментального выполнения задач классификации аудио и изображений. Физические нейронные сети способны выполнять машинное обучение быстрее и более энергоэффективно, чем обычные электронные процессоры, и, в более широком смысле, могут наделять физические системы автоматически создаваемыми физическими функциями, например, для робототехники, материалов и интеллектуальных датчиков.
📎 Статья
#physics #chip #hardware