AI Для Всех
12.8K subscribers
1.18K photos
153 videos
10 files
1.38K links
Канал, в котором мы говорим про искусственный интеллект простыми словами

Главный редактор и по рекламе: @crimeacs

Иногда пишут в канал: @GingerSpacetail, @innovationitsme
Download Telegram
Новая реплика gpt-3. Работает лучше (или сравнимо) оригинала.

Colab
Online demo

#NLP #GPT #generative
Генеративное_глубокое_обучение_Творческий_потенци.pdf
12.4 MB
Неплохая вводная книга по генеративным сетям. Устаревшая местами, но для новичков хорошая (нуу и она на tensorflow).

Неформальное описание задачи для AE и GAN очень творческие и красивые. Имхо для GAN у автора лучше получилось описание, чем классическое сыщик-фальшивомонетчик

#generative #GAN #gpt #книги
Genji - CoPilot для бедных.

Модель GPT-J (open-source версия GPT-3 от Eluther AI) затюненая на генерацию кода на Python.

Colab
Модель на Huggingface
Spaces

#code #generative #nlp #gpt
Раз уже на то пошло. GPT-J это модель обученная сообществом EutherAI (к которому я скромно тоже немного причастен, правда больше в области генерации картинок).

Онлайн демо open-source версии GPT-3 доступно тут (с телефона работает не всегда, с компа проблем нет)

Colab
Блог-пост
Видео-разбор

#gpt #nlp #generative
AI Dungeon 👹

Текстовая ролевая игра типа Dungeon & Dragons, только вместо гейм-мастера человека - гейм-мастер GPT-3.

У вас есть полная свобода действий. Можно делать вообще что угодно! Игра очень захватывает, а если что-то идет не так - можно последние действия отменить или даже резетнуть GPT.

Играть тут

#nlp #game #gpt #demo
VideoGPT: Video Generation using VQ-VAE and Transformers

Концептуально простая архитектура для масштабирования генеративного моделирования на основе правдоподобия (likelihood modeling) на естественное видео.

VideoGPT использует VQ-VAE, который выучивает латентные представления исходного видео с пониженной дискретизацией (downsampled), используя 3D-свертки и осевой self-attention.

Затем простая архитектура, типа #GPT, используется для авторегрессионного моделирования дискретных латентных представлений с помощью пространственно-временных позиционных кодировок (spatio-temporal position encodings).

Сеть способна генерировать видосы, конкурентоспособные с современными #GAN-моделями для генерации видео.

ArXiv
Проект
Colab

#video #generative
AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing

Большая обзорная статья на Transformer-based pretrained language models (T-PTLMs). Эволюция этих моделей началась с GPT и BERT.

Этот обширный обзор послужит хорошим пособием для изучения основных концептов, а также для того, чтобы быть в курсе последних событий в области T-PTLMs.

ArXiv

#nlp #gpt
Призыв от Стеллы Бёрдмэн из ElutherAI:

Вы (некомпьютерный) ученый, который хочет использовать такие модели, как GPT-3 от @OpenAI, для исследований? #EleutherAI хочет помочь. Мы разработали самые мощные в мире свободно распространяемые языковые модели ИИ и хотим передать их в ваши руки.

В какой поддержке вы нуждаетесь? Что я могу сделать, чтобы ваша исследовательская программа была осуществима? Напишите мне DM, @, ответьте в этой теме, напишите мне по адресу stella@eleuther.ai

Для ясности: мы не являемся стартапом и не берем $$. Мы - частная исследовательская группа с нулевым интересом к получению прибыли. Вы можете заплатить нам цитированием, соавторством и (что наиболее важно) проведением потрясающих исследований с помощью наших инструментов.

Тред

#ScientificML #science #gpt
Want To Reduce Labeling Cost? GPT-3 Can Help

Аннотирование данных - трудоемкий и длительный процесс для многих задач NLP. Хотя существуют различные методы получения псевдометок, они часто зависят от конкретной задачи и все равно требуют значительного количества размеренных данных.

В статье исследуются способы использования GPT-3 в качестве недорогого средства для разметки данных для обучения других моделей. Авторы обнаружили, что для того, чтобы последующая модель достигла одинаковой производительности в различных задачах NLU и NLG, использование меток из GPT-3 обходится на 50%-96% дешевле, чем использование меток от человека. Более того, авторы предлагают новую схему комбинирования псевдометок из GPT-3 с человеческими метками, что приводит к еще более высокой производительности при ограниченном бюджете на разметку. Эти результаты представляют экономически эффективную методологию разметки данных, которая может быть использована во многих практических приложениях.

Статья

#gpt #labeling #generative #nlp