خب خب خب، تفاوت Entrypoint و CMD توی داکر🐳
اگه با Dockerfile یا docker compose کار کرده باشین، احتمالا دوتا دستور CMD و Entrypoint برخورد کردین ولی تاحالا به تفاوتشون فکر کردین؟ اینکه هرکدوم چه کاری انجام میدن و کجا کاربرد دارن؟
✅CMD
برای مشخص کردن دستور پیشفرضی استفاده میشه که اگه هنگام اجرای کانتینر هیچ آرگومانی ندیم اجرا بشه. CMD باعث میشه که با خیلی راحت بتونین فقط با
توی این حالت، دستور نهایی ای که با
ولی اگه بنویسین
✅Entrypoint
برای تعیین دستور اصلی کانتیر استفاده میشه. یه جورایی میشه گفت دستور غیرقابل تغییر کانتینر رو میشه باهاش تعیین کرد. حتی اگه موقع اجرای کانتینر بیایم از آرگومان ها استفاده کنیم اون آرگومان ها به عنوان ورودی به Entrypoint پاس داده میشن. در نتیجه Entrypoint رفتار اصلی کانتینر رو تعیین میکنه.
حالا میتونین با
دستور
شما حتی میتونید همزمان ازشون استفاده کنید و با CMD آرگومان های مختلفی به دستور اصلیتون بفرستین. اینجوری دستتون برای اجرای کانتینر خیلی باز میشه.
و حالا اگه بخواین آرگومان های دستور رو تغییر بدین فقط کافیه اونهارو توی
جمع بندی✍️
از CMD برای تنظیم پیش فرض ها و حالت های مختلف استفاده کنید.
از Entrypoint برای تعیین رفتار اصلی و ثابت کانتینر استفاده کنید.
و البته که میتونین با ترکیبشون و استفاده ی درست از هردوتاشون کارای خفنی انجام بدین.
➖➖➖➖➖➖➖➖➖➖
اگه با Dockerfile یا docker compose کار کرده باشین، احتمالا دوتا دستور CMD و Entrypoint برخورد کردین ولی تاحالا به تفاوتشون فکر کردین؟ اینکه هرکدوم چه کاری انجام میدن و کجا کاربرد دارن؟
✅CMD
برای مشخص کردن دستور پیشفرضی استفاده میشه که اگه هنگام اجرای کانتینر هیچ آرگومانی ندیم اجرا بشه. CMD باعث میشه که با خیلی راحت بتونین فقط با
docker run image_name
کاری که میخواین رو انجام بدین(فقط وقتی که Entrypoint وجود نداشته باشه). ولی اگه توی docker run
آرگومان بدین اون آرگومان های جدید جای CMD توی Dockerfile رو میگیرن.CMD ["python3", "app.py"]
توی این حالت، دستور نهایی ای که با
docker run
اجرا میشه این شکلیه:python3 app.py
ولی اگه بنویسین
docker run image_name echo hello
دستور نهایی این شکلی میشه:echo hello
✅Entrypoint
برای تعیین دستور اصلی کانتیر استفاده میشه. یه جورایی میشه گفت دستور غیرقابل تغییر کانتینر رو میشه باهاش تعیین کرد. حتی اگه موقع اجرای کانتینر بیایم از آرگومان ها استفاده کنیم اون آرگومان ها به عنوان ورودی به Entrypoint پاس داده میشن. در نتیجه Entrypoint رفتار اصلی کانتینر رو تعیین میکنه.
ENTRYPOINT ["python3", "app.py"]
حالا میتونین با
docker run
اجراش کنید و البته که میتونین با پاس دادن آرگومان به docker run
اونهارو به Entrypoint اضافه کنید. دستور
docker run image_name --option
باعث میشه که دستور نهایی ای که برای اجرا کانتینر استفاده بشه این شکلی بشه:python3 app.py --option
شما حتی میتونید همزمان ازشون استفاده کنید و با CMD آرگومان های مختلفی به دستور اصلیتون بفرستین. اینجوری دستتون برای اجرای کانتینر خیلی باز میشه.
ENTRYPOINT ["python3", "app.py"]
CMD ["--option"]
و حالا اگه بخواین آرگومان های دستور رو تغییر بدین فقط کافیه اونهارو توی
docker run
به کانتینر پاس بدین.جمع بندی✍️
از CMD برای تنظیم پیش فرض ها و حالت های مختلف استفاده کنید.
از Entrypoint برای تعیین رفتار اصلی و ثابت کانتینر استفاده کنید.
و البته که میتونین با ترکیبشون و استفاده ی درست از هردوتاشون کارای خفنی انجام بدین.
#️⃣ #programming #devops
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
🔥13👍4❤1
خب خب خب، Volume توی داکر🐳
Volume ها توی داکر یه راه استاندارد برای ذخیره ی داده ها به شکل پایدار(persistent data) هستن. یعنی وقتی که یه کانتینر خاموش یا پاک میشه، داده هایی که داخل Volume ذخیره شده باشن از بین نمیرن و دوباره قابل استفاده هستن. که این یعنی Volume ها جدا از لایه ی فایل سیستم کانتینر عمل میکنن و توی
چطور ازشون استفاده کنیم؟🤔
میتونید با استفاده از دستور زیر Volumeها رو مدیریت کنید.
نکته⚠️: اگه یه Volume هنوز به یه کانتینر متصل باشه، نمیشه مستقیم با rm حذفش کرد.
بعد از ساختن Volume های مورد نظرتون میتونید به این شکل وصلشون کنید به کانتینر هاتون:
یا توی فایل compose:
خب همونطور که دیدین، اسم Volume رو سمت چپ دو نقطه و مسیری که میخوایم توی کانتینر بهش وصل بشیم رو سمت راست میذاریم.
با اینکار هر تغییری که توی مسیر
یه نکته ی مهم⚠️
احتمالا توی بعضی جاها دیده باشین که از سینتکس زیر استفاده میشه:
توی این روش سمت راست دونقطه به جای اسم Volume، مسیر فعلی توی سیستم قرار داده شده. توی این روش اصلا از Volume استفاده نمیشه و اسمش Bind Mount هست. درواقع اگه سمت راست دو نقطه به جای اسم Volume یه مسیر توی فایل سیستمتون رو بنویسید، Bind Mount اتفاق میوفته.
اینجا به جای اینکه یه Volume رو به فایل سیستم کانتینر وصل کرده باشیم، پوشه فعلی از فایل سیستم اصلی خودمون رو به فایل سیستم کانتینر وصل کردیم. این کار باعث بروز یه سری مشکلات میشه:
1️⃣ اگه اطلاعات توی کانتینر از دست برن توی فایل سیستم اصلی هم از دست میرن
جمع بندی✍️
Volume ها بشدت کاربردی هستن و میتونن برنامه نویس و کد رو نجات بدن. فقط باید دقت کنید که مسیر درستی رو به Volume بدین.
همچنین Bind Mount هم میتونه توی فاز توسعه کاربردی باشه. چون خیلی راحت میشه تغییرات توی کد رو روی کانتینر مشاهده و بررسی کرد ولی برای محیط پروداکشن خیلی خطرناک هستن و میتونن کلا محصول شمارو خراب کنن.
➖➖➖➖➖➖➖➖➖➖
Volume ها توی داکر یه راه استاندارد برای ذخیره ی داده ها به شکل پایدار(persistent data) هستن. یعنی وقتی که یه کانتینر خاموش یا پاک میشه، داده هایی که داخل Volume ذخیره شده باشن از بین نمیرن و دوباره قابل استفاده هستن. که این یعنی Volume ها جدا از لایه ی فایل سیستم کانتینر عمل میکنن و توی
/var/lib/docker/volumes/
نگهداری میشن. کاربردشون معمولا برای دیتابیس ها، فایل های کاربر، یا هر داده ای که نباید با حذف کانتینر از دست بره هست.چطور ازشون استفاده کنیم؟🤔
میتونید با استفاده از دستور زیر Volumeها رو مدیریت کنید.
docker volume ls
# List all existing volumes
docker volume create NAME
# Create a new volume
docker volume inspect NAME
# View detailed information about a volume
docker volume rm NAME
# Remove a specific volume
docker volume prune
# Remove all unused volumes
نکته⚠️: اگه یه Volume هنوز به یه کانتینر متصل باشه، نمیشه مستقیم با rm حذفش کرد.
بعد از ساختن Volume های مورد نظرتون میتونید به این شکل وصلشون کنید به کانتینر هاتون:
docker run -v my_volume:/app/data my_image
یا توی فایل compose:
services:
app:
image: my_image
container_name: my_container
volumes:
- my_volume:/app/data
volumes:
my_volume:
خب همونطور که دیدین، اسم Volume رو سمت چپ دو نقطه و مسیری که میخوایم توی کانتینر بهش وصل بشیم رو سمت راست میذاریم.
با اینکار هر تغییری که توی مسیر
/app/data/
توی فایل سیستم کانتینر رخ بده توی Volume هم ذخیره میشه و حتی با خاموش شدن کانتینر هم در دسترس و قابل استفاده هست.یه نکته ی مهم⚠️
احتمالا توی بعضی جاها دیده باشین که از سینتکس زیر استفاده میشه:
services:
app:
image: my_image
container_name: my_container
volumes:
- .:/app/data
توی این روش سمت راست دونقطه به جای اسم Volume، مسیر فعلی توی سیستم قرار داده شده. توی این روش اصلا از Volume استفاده نمیشه و اسمش Bind Mount هست. درواقع اگه سمت راست دو نقطه به جای اسم Volume یه مسیر توی فایل سیستمتون رو بنویسید، Bind Mount اتفاق میوفته.
اینجا به جای اینکه یه Volume رو به فایل سیستم کانتینر وصل کرده باشیم، پوشه فعلی از فایل سیستم اصلی خودمون رو به فایل سیستم کانتینر وصل کردیم. این کار باعث بروز یه سری مشکلات میشه:
1️⃣ اگه اطلاعات توی کانتینر از دست برن توی فایل سیستم اصلی هم از دست میرن
یعنی اگه شما پروژه رو توی کانتینر حذف کنید، از روی سیستم خودتون هم حذف میشه. درواقع هر تغییری که توی کانتینر ایجاد کنید توی فایل سیستم اصلیتون هم ایجاد میشه.2️⃣ عدم تطابق نسخه ی فایل ها
وقتی چند تا کانتینر همزمان یه مسیر رو Bind کردن، ممکنه فایل ها تصادفی توسط یکی از کانتینر ها تغییر کنه و هماهنگی بین فایل های پروژه به هم بریزه و باعث خرابی بشه.3️⃣ ریسک های امنیتی
اگه داخل کانتینر دسترسی root باشه و به پوشه های حساسی Bind Mount شده باشه، کانتینر میتونه مستقیما به فایل های سیستمی آسیب بزنه.4️⃣ انتقال ناخواسته ی فایل های حساس
اگه اشتباهی کل home/ یا / رو mount کنید داخل کانتینر، ممکنه فایل های حساس(مثل SSH Keyها، توکن ها، رمزها و...) هم توی محیط کانتینر قابل دسترس باشه.
جمع بندی✍️
Volume ها بشدت کاربردی هستن و میتونن برنامه نویس و کد رو نجات بدن. فقط باید دقت کنید که مسیر درستی رو به Volume بدین.
همچنین Bind Mount هم میتونه توی فاز توسعه کاربردی باشه. چون خیلی راحت میشه تغییرات توی کد رو روی کانتینر مشاهده و بررسی کرد ولی برای محیط پروداکشن خیلی خطرناک هستن و میتونن کلا محصول شمارو خراب کنن.
#️⃣ #programming #devops
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍13
خب خب خب، Redis ولی برای چه کاری؟🗃
خب خیلی وقتا اسم ردیس رو شنیدید ولی دقیقا ندونید که کاربردش چیه و کجا استفاده میشه.
اصلا Redis چی هست؟🤔
خیلی ساده بخوام بگم، ردیس یه دیتابیس in-memory هست که با ساختار کلید و مقدار(key-value) کار میکنه. یعنی داده ها به صورت یک کلید و یک مقدار توش ذخیره میشن. حالا همون in-memory بودنش باعث شده تا سرعت فوقالعاده بالای داشته باشه.
ویژگی های Redis🔍
1️⃣ in-memory بودن که باعث سرعت بالاش شده.
2️⃣ پشتیبانی از TTL یا همون انقضای خودکار داده ها.
3️⃣ Atomic بودن عملیات ها.
4️⃣ پشتیبانی از Pub/Sub برای ارسال پیام بین سرویس ها.
5️⃣ قابلیت Cluster و Scale افقی
خب کجا کاربرد داره؟🛠
کش(Cache): وقتی یه داده ی پرتکرار داریم که نمیخوایم هربار از منبع دریافتش کنیم(مثلا دیتابیس اصلی پروژه) میتونیم یه بار دریافتش کنیم، توی redis ذخیرش کنیم و درنهایت توی درخواست های بعدی اون داده رو از redis دریافت کنیم. فقط باید حواسمون باشه که داده هایی که توی redis هستن بسته به داده ای که داریم توی یه بازه زمانی مشخص آپدیت بشن تا داده های قدیمی برنگردونیم.
صف پیام(Message Queue): خب redis میتونه به عنوان یه صف سبک کار کنه. مثلا برای صف بندی ایمیل هایی که میخوایم ارسال کنیم، تسک های پس زمینه و خیلی چیزای دیگه.
مدیریت نشست ها(Session Management): برای ذخیره سازی session های کاربرا با زمان انقضا. خیلی از سیستم های احراز هویت و مدیریت سبد خرید توی سایت های فروشگاهی از redis استفاده میکنن.
جمع بندی✍️
Redis یه ابزار سبک و سریعه که با سرعت فوقلعادش برای کارهای موقتی و سریع عالیه. این دیتابیس داده هارو به شکل key-value ذخیره میکنه. اگه تسکایی دارین که نیاز به دسترسی سریع، ذخیره ی موقت یا مدیریت ساده ی تسک ها نیاز دارن، Redis میتونه انتخاب خوبی باشه.
➖➖➖➖➖➖➖➖➖➖
خب خیلی وقتا اسم ردیس رو شنیدید ولی دقیقا ندونید که کاربردش چیه و کجا استفاده میشه.
اصلا Redis چی هست؟🤔
خیلی ساده بخوام بگم، ردیس یه دیتابیس in-memory هست که با ساختار کلید و مقدار(key-value) کار میکنه. یعنی داده ها به صورت یک کلید و یک مقدار توش ذخیره میشن. حالا همون in-memory بودنش باعث شده تا سرعت فوقالعاده بالای داشته باشه.
ویژگی های Redis🔍
1️⃣ in-memory بودن که باعث سرعت بالاش شده.
2️⃣ پشتیبانی از TTL یا همون انقضای خودکار داده ها.
3️⃣ Atomic بودن عملیات ها.
4️⃣ پشتیبانی از Pub/Sub برای ارسال پیام بین سرویس ها.
5️⃣ قابلیت Cluster و Scale افقی
خب کجا کاربرد داره؟🛠
کش(Cache): وقتی یه داده ی پرتکرار داریم که نمیخوایم هربار از منبع دریافتش کنیم(مثلا دیتابیس اصلی پروژه) میتونیم یه بار دریافتش کنیم، توی redis ذخیرش کنیم و درنهایت توی درخواست های بعدی اون داده رو از redis دریافت کنیم. فقط باید حواسمون باشه که داده هایی که توی redis هستن بسته به داده ای که داریم توی یه بازه زمانی مشخص آپدیت بشن تا داده های قدیمی برنگردونیم.
صف پیام(Message Queue): خب redis میتونه به عنوان یه صف سبک کار کنه. مثلا برای صف بندی ایمیل هایی که میخوایم ارسال کنیم، تسک های پس زمینه و خیلی چیزای دیگه.
مدیریت نشست ها(Session Management): برای ذخیره سازی session های کاربرا با زمان انقضا. خیلی از سیستم های احراز هویت و مدیریت سبد خرید توی سایت های فروشگاهی از redis استفاده میکنن.
جمع بندی✍️
Redis یه ابزار سبک و سریعه که با سرعت فوقلعادش برای کارهای موقتی و سریع عالیه. این دیتابیس داده هارو به شکل key-value ذخیره میکنه. اگه تسکایی دارین که نیاز به دسترسی سریع، ذخیره ی موقت یا مدیریت ساده ی تسک ها نیاز دارن، Redis میتونه انتخاب خوبی باشه.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍10❤2
خب خب خب، انواع کلید توی دیتابیس های رابطه ای🔑
کلید ها توی دیتابیس ها نقش حیاتی ای توی تضمین یکپارچگی و سازماندهی داده ها دارن. شاید تا الان موقع طراحی دیتابیس به این فکر کرده باشین که مثلا Primary Key چیه؟ چطوری تعیین میشه؟ یا اینکه اصلا Foreign Key چیه؟ توی این پست مهم ترین کلیدهای دیتابیس رو باهم مرور میکنیم.
1. کلید اولیه یا اصلی (Primary Key):
هر جدول یک کلید اولیه داره که رکوردها رو بهصورت یکتا شناسایی میکنه. مقادیر این کلید باید منحصربهفرد و غیر NULL باشن.
مثال: توی جدول کاربران، user_id به عنوان کلید اولیه عمل میکنه. نمیتونه NULL باشه و حتما باید منحصر به فرد باشه.
2. کلید خارجی (Foreign Key):
کلید خارجی ارتباط بین دو جدول را فراهم میکنه و به کلید اولیه یک جدول دیگر اشاره داره. این کلید برای حفظ یکپارچگی مرجع استفاده میشه. درواقع ستونی که به کلید اصلی یه جدول دیگه اشاره کنه رو کلید خارجی میگن.
مثال: توی جدول سفارشات، user_id به کلید اولیه جدول کاربران اشاره میکنه. کلید اصلی از جدول کاربران توی جدول سفارشات استفاده شده و توی جدول سفارشات بهش میگیم کلید خارجی.
3. کلید ترکیبی (Composite Key):
کلیدی که از ترکیب چند ستون ساخته میشه و برای شناسایی یکتا به کار میره. معمولاً زمانی که یک ستون به تنهایی کافی نیست از کلید ترکیبی استفاده میشه.
مثال: در جدول ثبتنامها، ترکیب student_id و course_id یک کلید ترکیبی ایجاد میکنه.
4. کلید کاندید (Candidate Key):
هر ستون یا ترکیبی از ستونها که بتونه به عنوان کلید اصلی استفاده بشه، کلید کاندید نامیده میشه. هر جدول میتواند چندین کلید کاندید داشته باشه، اما فقط یکی از اونها به عنوان کلید اصلی انتخاب میشن. خیلی ساده تر بخوام بگم ستون یا ستون هایی که میتونستند به عنوان کلید اصلی انتخاب بشن.
مثال: توی جدول محصولات، ستونهای product_code و product_name میتونن به عنوان کلید کاندید عمل کنن.
5. سوپر کلید (Super Key):
سوپر کلید، هر مجموعهای از ستونهاست که میتونه هر رکورد توی جدول رو بهطور یکتا شناسایی کنه. همه کلیدهای کاندید و کلید اصلی، سوپر کلید هستند، ولی هر سوپر کلیدی کاندید نیست.
مثال: ستون user_id یا ترکیب user_id و email در جدول کاربران میتواند سوپر کلید باشد.
7. کلید جایگزین (Alternate Key):
زمانی که یک کلید کاندید به عنوان کلید اولیه انتخاب نمیشه، بهش کلید جایگزین میگن. این کلید هنوز قابلیت شناسایی یکتا را داره،ولی به عنوان کلید اصلی انتخاب نشده.
مثال: اگر توی جدول کاربران هم user_id و هم email کلید کاندید باشن و user_id به عنوان کلید اصلی انتخاب بشه، email کلید جایگزین خواهد بود.
8. کلید منحصر به فرد (Unique Key):
مثل کلید کاندیده با این تفاوت که کلید منحصر به فرد میتونه مقدار NULL داشته باشه (در بیشتر پایگاهدادهها حتی چند مقدار NULL مجازه)، ولی مقادیر غیر NULL نباید تکراری باشن. کلید منحصر به فرد در تضمین یکتایی دادهها موثر هست.
مثال: توی جدول کاربران، email میتونه یک کلید منحصر به فرد باشه، به این صورت که مقادیر ایمیل نباید تکراری باشن، اما میتونن NULL باشند.
جمع بندی✍️
این کلیدها به شما کمک میکنن تا وابستگیهای تابعی رو بهتر بشناسید و ساختار دیتابیستون رو اصولی و منظم طراحی کنید. همچنین باعث میشن دیتابیستون هم مقیاسپذیرتر باشه و هم برای تغییرات آینده آمادهتر.
➖➖➖➖➖➖➖➖➖➖
کلید ها توی دیتابیس ها نقش حیاتی ای توی تضمین یکپارچگی و سازماندهی داده ها دارن. شاید تا الان موقع طراحی دیتابیس به این فکر کرده باشین که مثلا Primary Key چیه؟ چطوری تعیین میشه؟ یا اینکه اصلا Foreign Key چیه؟ توی این پست مهم ترین کلیدهای دیتابیس رو باهم مرور میکنیم.
1. کلید اولیه یا اصلی (Primary Key):
هر جدول یک کلید اولیه داره که رکوردها رو بهصورت یکتا شناسایی میکنه. مقادیر این کلید باید منحصربهفرد و غیر NULL باشن.
مثال: توی جدول کاربران، user_id به عنوان کلید اولیه عمل میکنه. نمیتونه NULL باشه و حتما باید منحصر به فرد باشه.
2. کلید خارجی (Foreign Key):
کلید خارجی ارتباط بین دو جدول را فراهم میکنه و به کلید اولیه یک جدول دیگر اشاره داره. این کلید برای حفظ یکپارچگی مرجع استفاده میشه. درواقع ستونی که به کلید اصلی یه جدول دیگه اشاره کنه رو کلید خارجی میگن.
مثال: توی جدول سفارشات، user_id به کلید اولیه جدول کاربران اشاره میکنه. کلید اصلی از جدول کاربران توی جدول سفارشات استفاده شده و توی جدول سفارشات بهش میگیم کلید خارجی.
3. کلید ترکیبی (Composite Key):
کلیدی که از ترکیب چند ستون ساخته میشه و برای شناسایی یکتا به کار میره. معمولاً زمانی که یک ستون به تنهایی کافی نیست از کلید ترکیبی استفاده میشه.
مثال: در جدول ثبتنامها، ترکیب student_id و course_id یک کلید ترکیبی ایجاد میکنه.
4. کلید کاندید (Candidate Key):
هر ستون یا ترکیبی از ستونها که بتونه به عنوان کلید اصلی استفاده بشه، کلید کاندید نامیده میشه. هر جدول میتواند چندین کلید کاندید داشته باشه، اما فقط یکی از اونها به عنوان کلید اصلی انتخاب میشن. خیلی ساده تر بخوام بگم ستون یا ستون هایی که میتونستند به عنوان کلید اصلی انتخاب بشن.
مثال: توی جدول محصولات، ستونهای product_code و product_name میتونن به عنوان کلید کاندید عمل کنن.
5. سوپر کلید (Super Key):
سوپر کلید، هر مجموعهای از ستونهاست که میتونه هر رکورد توی جدول رو بهطور یکتا شناسایی کنه. همه کلیدهای کاندید و کلید اصلی، سوپر کلید هستند، ولی هر سوپر کلیدی کاندید نیست.
مثال: ستون user_id یا ترکیب user_id و email در جدول کاربران میتواند سوپر کلید باشد.
برای این میگیم هر سوپر کلیدی، کلید کاندید نیست که یه سوپر کلید ممکنه از ترکیب یه کلید اصلی و یه کلید کاندید ایجاد شده باشه(مثلا user_id+user_email) ولی چون فقط با یکی از اینها(user_id) میتونیم یه رکورد رو به صورت یکتا شناسایی کنیم و کلید دومی(user_email) یه جورایی اضافه هست، دیگه این ترکیب کاندید نیست بلکه این فیلد ها هرکدوم یه کلید کاندید به حساب میان.
7. کلید جایگزین (Alternate Key):
زمانی که یک کلید کاندید به عنوان کلید اولیه انتخاب نمیشه، بهش کلید جایگزین میگن. این کلید هنوز قابلیت شناسایی یکتا را داره،ولی به عنوان کلید اصلی انتخاب نشده.
مثال: اگر توی جدول کاربران هم user_id و هم email کلید کاندید باشن و user_id به عنوان کلید اصلی انتخاب بشه، email کلید جایگزین خواهد بود.
8. کلید منحصر به فرد (Unique Key):
مثل کلید کاندیده با این تفاوت که کلید منحصر به فرد میتونه مقدار NULL داشته باشه (در بیشتر پایگاهدادهها حتی چند مقدار NULL مجازه)، ولی مقادیر غیر NULL نباید تکراری باشن. کلید منحصر به فرد در تضمین یکتایی دادهها موثر هست.
مثال: توی جدول کاربران، email میتونه یک کلید منحصر به فرد باشه، به این صورت که مقادیر ایمیل نباید تکراری باشن، اما میتونن NULL باشند.
جمع بندی✍️
این کلیدها به شما کمک میکنن تا وابستگیهای تابعی رو بهتر بشناسید و ساختار دیتابیستون رو اصولی و منظم طراحی کنید. همچنین باعث میشن دیتابیستون هم مقیاسپذیرتر باشه و هم برای تغییرات آینده آمادهتر.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍9❤3
خب خب خب، وابستگی های تابعی توی دیتابیس ها🗄
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگیهای تابعی رو تشخیص بدیم، باید کلیدهای جدولهامون رو بشناسیم، چون معمولاً وابستگیها بر اساس کلیدها تعریف میشن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.
وابستگی تابعی چیه؟🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.
اهمیت وابستگی های تابعی📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.
2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.
3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.
4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.
5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.
6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.
نحوه کشف وابستگی های تابعی🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.
2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.
3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.
4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.
جمع بندی✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.
➖➖➖➖➖➖➖➖➖➖
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگیهای تابعی رو تشخیص بدیم، باید کلیدهای جدولهامون رو بشناسیم، چون معمولاً وابستگیها بر اساس کلیدها تعریف میشن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.
وابستگی تابعی چیه؟🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.
اهمیت وابستگی های تابعی📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.
2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.
3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.
4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.
5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.
6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.
نحوه کشف وابستگی های تابعی🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.
2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.
3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.
4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.
جمع بندی✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤7👍2
خب خب خب، انواع وابستگی های تابعی توی دیتابیس🗄
توی پست قبلی با وابستگی های تابعی آشنا شدیم و کاربردشون و نحوه کشفشون رو یاد گرفتیم. توی این پست به انواع این وابستگی ها میپردازیم.
1️⃣وابستگی تابعی کامل(Full)
زمانی رخ میده که مقدار یه ستون(B) به طور کامل توسط یک ستون دیگه(A) تعیین میشه. یعنی هیچ زیر مجموعه ای از A نمیتونه مقدار B رو تعیین کنه.
مثال: employee_id -> employee_name
2️⃣وابستگی تابعی جزئی(Partial)
زمانی رخ میده که فقط بخشی از یک کلید ترکیبی مقدار یک ستون دیگه رو تعیین میکنه.
مثال: اگر در (employee_id, department_id -> department_name) فقط department_id بتونه به تنهایی department_name رو تعیین کنه این وابستگی رخ میده.
3️⃣وابستگی تابعی متعدی(Transitive)
اگر A مقدار B رو تعیین کنه و B مقدار C رو تعیین کنه، وابستگی متعدی بین A و C رخ میده.
مثال: اگر order_id -> customer_id و customer_id -> customer_name برقرار باشن بنابراین order_id -> customer_name هم برقراره.
4️⃣وابستگی تابعی بدیهی(Trivial)
توی وابستگی تابعی بدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده است و در این صورت مجموعه تعیین کننده مقادیر مجموعه وابسته رو تعیین میکنه.
مثال: (employee_id, employee_name -> employee_name)
5️⃣وابستگی تابعی غیربدیهی(Non-Trivial)
در وابستگی تابعی غیربدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده نیست.
مثال: employee_id -> employee_name
6️⃣وابستگی تابعی چند مقداری(MultiValued)
زمانی رخ میده که یک کلید اولیه میتونه مقدار چندین ستون رو تعیین کنه به شرطی که بین ستون های وابسته هیچ ارتباط یا وابستگی ای نباشه.
مثال: employee_id -> (employee_name, employee_age). توی این مثال id کارمند اسم و سن اون رو تعیین میکنه ولی ارتباط یا وابستگی ای بین سن و اسم کارمند وجود نداره.
جمع بندی✍️
این ها انواع وابستگی های تابعی بودن و سعی کردم ساده و قابل فهم توضیحشون بدم. در اصل پیدا کردن و شناختنشون یکمی پیچیده تر از چیزیه که اینجا بیان شد، میتونین با مراجعه به منابع مختلف دانش خودتون توی این زمینه رو تقویت کنید.
➖➖➖➖➖➖➖➖➖➖
توی پست قبلی با وابستگی های تابعی آشنا شدیم و کاربردشون و نحوه کشفشون رو یاد گرفتیم. توی این پست به انواع این وابستگی ها میپردازیم.
1️⃣وابستگی تابعی کامل(Full)
زمانی رخ میده که مقدار یه ستون(B) به طور کامل توسط یک ستون دیگه(A) تعیین میشه. یعنی هیچ زیر مجموعه ای از A نمیتونه مقدار B رو تعیین کنه.
مثال: employee_id -> employee_name
2️⃣وابستگی تابعی جزئی(Partial)
زمانی رخ میده که فقط بخشی از یک کلید ترکیبی مقدار یک ستون دیگه رو تعیین میکنه.
مثال: اگر در (employee_id, department_id -> department_name) فقط department_id بتونه به تنهایی department_name رو تعیین کنه این وابستگی رخ میده.
3️⃣وابستگی تابعی متعدی(Transitive)
اگر A مقدار B رو تعیین کنه و B مقدار C رو تعیین کنه، وابستگی متعدی بین A و C رخ میده.
مثال: اگر order_id -> customer_id و customer_id -> customer_name برقرار باشن بنابراین order_id -> customer_name هم برقراره.
4️⃣وابستگی تابعی بدیهی(Trivial)
توی وابستگی تابعی بدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده است و در این صورت مجموعه تعیین کننده مقادیر مجموعه وابسته رو تعیین میکنه.
مثال: (employee_id, employee_name -> employee_name)
5️⃣وابستگی تابعی غیربدیهی(Non-Trivial)
در وابستگی تابعی غیربدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده نیست.
مثال: employee_id -> employee_name
6️⃣وابستگی تابعی چند مقداری(MultiValued)
زمانی رخ میده که یک کلید اولیه میتونه مقدار چندین ستون رو تعیین کنه به شرطی که بین ستون های وابسته هیچ ارتباط یا وابستگی ای نباشه.
مثال: employee_id -> (employee_name, employee_age). توی این مثال id کارمند اسم و سن اون رو تعیین میکنه ولی ارتباط یا وابستگی ای بین سن و اسم کارمند وجود نداره.
جمع بندی✍️
این ها انواع وابستگی های تابعی بودن و سعی کردم ساده و قابل فهم توضیحشون بدم. در اصل پیدا کردن و شناختنشون یکمی پیچیده تر از چیزیه که اینجا بیان شد، میتونین با مراجعه به منابع مختلف دانش خودتون توی این زمینه رو تقویت کنید.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤9
خب خب خب، git reset🔄
توی گیت، دستور reset مثل یه دکمه ی سفر در زمانه که مارو به گذشته ی پروژه میبره. اما چند حالت مختلف داره و بسته به اینکه کدوم یکی از این حالت ها استفاده بشن میتونه روی تاریخچه ی پروژه هم تاثیر بزاره.
Mixed🟡
این حالت پیش فرض برای دستور reset هست. HEAD رو به کامیت مشخص شده برمیگردونه. تغییرات بعد از اون کامیت از Stage خارج میشن(unstaged) ولی تغییرات هنوز توی فایل ها هستن. برای موقعی که میخواین تغییرات باقی بمونن ولی توی Stage نباشن خوبه.
شکل کلی دستور ریست:
دستور ریست با حالت mixed:
دستور بالا آخرین کامیت رو پاک میکنه، تغییرات هنوز وجود دارن ولی دیگه توی Stage نیستن.
Soft🔵
فقط HEAD رو برمیگردونه به کامیت مشخص شده. تغییرات بعد از اون کامیت رو توی Stage نگه میداره. زمانی استفاده میشه که بخوایم کامیت رو حذف کنیم ولی تغییرات باقی بمونن، برای commit مجدد یا اصلاح پیام.
به طور مثال دستور بالا آخرین کامیت رو پاک میکنه و تغییرات رو توی Staging قرار میده.
Hard🔴
توی این حالت HEAD به کامیت مشخص شده برمیگرده، Staging area و فایل هارو کاملا با کامیت مشخص شده هماهنگ میکنه، درواقع هرتغییر یا کامیتی بعد از کامیت مشخص شده پاک میشه و پروژه برمیگرده به وضعیت همون کامیت. وقتی استفاده میشه که بخوایم همه چی رو مثل اون کامیت کنیم و تغییرات بعد از اون رو حذف کنیم.
این دستور پروژه رو طوری تغییر میده که انگار اصلا کامیت آخر وجود نداشته. هیچ تغییری هیچ جایی ذخیره نمیشه و فایل ها برمیگردن به کامیت قبلی.
جمع بندی✍️
دستور reset میتونه نجات دهنده و حتی مخرب باشه. میتونه پروژه رو نجات بده یا یه تغییر بزرگ رو از بین ببره. کاربردای مختلفی داره و برای برگشت به کامیت های قبلی به شکل های مختلف استفاده میشه.
➖➖➖➖➖➖➖➖➖➖
توی گیت، دستور reset مثل یه دکمه ی سفر در زمانه که مارو به گذشته ی پروژه میبره. اما چند حالت مختلف داره و بسته به اینکه کدوم یکی از این حالت ها استفاده بشن میتونه روی تاریخچه ی پروژه هم تاثیر بزاره.
Mixed🟡
این حالت پیش فرض برای دستور reset هست. HEAD رو به کامیت مشخص شده برمیگردونه. تغییرات بعد از اون کامیت از Stage خارج میشن(unstaged) ولی تغییرات هنوز توی فایل ها هستن. برای موقعی که میخواین تغییرات باقی بمونن ولی توی Stage نباشن خوبه.
شکل کلی دستور ریست:
git reset <--mode> <commit-id>
دستور ریست با حالت mixed:
git reset --mixed HEAD~1
git reset HEAD~1 # هست mixed حالت پیش فرض همین
دستور بالا آخرین کامیت رو پاک میکنه، تغییرات هنوز وجود دارن ولی دیگه توی Stage نیستن.
Soft🔵
فقط HEAD رو برمیگردونه به کامیت مشخص شده. تغییرات بعد از اون کامیت رو توی Stage نگه میداره. زمانی استفاده میشه که بخوایم کامیت رو حذف کنیم ولی تغییرات باقی بمونن، برای commit مجدد یا اصلاح پیام.
git reset --soft HEAD~1
به طور مثال دستور بالا آخرین کامیت رو پاک میکنه و تغییرات رو توی Staging قرار میده.
Hard🔴
توی این حالت HEAD به کامیت مشخص شده برمیگرده، Staging area و فایل هارو کاملا با کامیت مشخص شده هماهنگ میکنه، درواقع هرتغییر یا کامیتی بعد از کامیت مشخص شده پاک میشه و پروژه برمیگرده به وضعیت همون کامیت. وقتی استفاده میشه که بخوایم همه چی رو مثل اون کامیت کنیم و تغییرات بعد از اون رو حذف کنیم.
git reset --hard HEAD~1
این دستور پروژه رو طوری تغییر میده که انگار اصلا کامیت آخر وجود نداشته. هیچ تغییری هیچ جایی ذخیره نمیشه و فایل ها برمیگردن به کامیت قبلی.
جمع بندی✍️
دستور reset میتونه نجات دهنده و حتی مخرب باشه. میتونه پروژه رو نجات بده یا یه تغییر بزرگ رو از بین ببره. کاربردای مختلفی داره و برای برگشت به کامیت های قبلی به شکل های مختلف استفاده میشه.
#️⃣ #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
🔥11👍2❤1
خب خب خب، زمان به زبان کامپیوتر ها⏱️
حتما تا الان توی برنامه نویسی یا دیتابیس ها، زمان رو به شکل یه عدد عجیب و غریب مثل
چرا از 1970؟🤔
زمانی که سیستم عامل Unix در دهه ی 70 ساخته شد، توسعه دهنده ها برای ذخیره ی زمان تصمیم گرفتن یه نقطه شروع ثابت رو انتخاب کنن و اون نقطه شروع شد:
1970-01-01 00:00:00
جه کاربردی داره و کجا استفاده میشه؟🛠
1️⃣هماهنگی زمان توی سیستم های مختلف
زمان میتونه توی سیستم های مختلف و حتی سطوح مختلف، به شکل های مختلفی ثبت بشه یا برای همه ی سیستم ها قابل خوندن نباشه، با استفاده از Epoch Time خیلی راحت میشه هماهنگی و دقت زمان بین سیستم های مختلف رو حفظ کرد.
2️⃣مقایسه ی ساده تر زمان
چون فقط یه عدد معمولیه، خیلی راحت میشه با عملگرهای ساده مثل بزرگتر یا کوچکتر، زمانها رو با هم مقایسه کرد.
به عنوان ساده ترین مثال هم میشه به توکن های JWT اشاره کرد که برای نگهداری زمان انقضا از Epoch Time استفاده میکنن.
چطوری Epoch Time رو به دست بیاریم؟🧮
میتونید به سایت هایی مثل epoch converter مراجعه کنید. این سایت ها امکاناتی مثل تبدیل زمان و نمایش زمان فعلی به شکل Epoch رو دراختیارتون قرار میدن.
همچنین میتونید با زبان برنامه نویسی خودتون هم زمان هارو تبدیل کنید. به طور مثال توی پایتون با کد زیر میشه اینکارو انجام داد:
نکته جالب: زمان منفی هم داریم!
درسته اگه بخوایم زمان قبل از 1970 رو نشون بدیم Epoch Time مقدار منفی میگیره. مثلا:
جمع بندی✍️
درواقع Epoch Time یعنی تعداد ثانیه هایی که از ۱ ژانویه ۱۹۷۰ میلادی ساعت 00:00:00 گذشته. این روش زمان سنجی توی بیشتر سیستم عامل ها، زبان های برنامه نویسی و دیتابیس ها استفاده میشه و برای اکثر برنامه ها قابل خوندنه. مزیتیش اینه که زمان رو به صورت عددی، دقیق، فشرده و قابل مقایسه ذخیره میکنه و زمان توی Epoch Time میتونه مثبت یا منفی باشه.
➖➖➖➖➖➖➖➖➖➖
حتما تا الان توی برنامه نویسی یا دیتابیس ها، زمان رو به شکل یه عدد عجیب و غریب مثل
1717069200
دیدین. این عدد درواقع همون Epoch Time یا Unix Timestamp هست. درواقع از 1 ژانویه ی 1970 شمارش زمان به این شکل شروع شده و اون لحظه عدد صفر رو در زمان یونیکس مشخص میکنه. نحوه شمارش هم به این شکله که هر ثانیه که از اون لحظه بگذره، به این عدد یکی اضافه میشه.چرا از 1970؟🤔
زمانی که سیستم عامل Unix در دهه ی 70 ساخته شد، توسعه دهنده ها برای ذخیره ی زمان تصمیم گرفتن یه نقطه شروع ثابت رو انتخاب کنن و اون نقطه شروع شد:
1970-01-01 00:00:00
جه کاربردی داره و کجا استفاده میشه؟🛠
1️⃣هماهنگی زمان توی سیستم های مختلف
زمان میتونه توی سیستم های مختلف و حتی سطوح مختلف، به شکل های مختلفی ثبت بشه یا برای همه ی سیستم ها قابل خوندن نباشه، با استفاده از Epoch Time خیلی راحت میشه هماهنگی و دقت زمان بین سیستم های مختلف رو حفظ کرد.
2️⃣مقایسه ی ساده تر زمان
چون فقط یه عدد معمولیه، خیلی راحت میشه با عملگرهای ساده مثل بزرگتر یا کوچکتر، زمانها رو با هم مقایسه کرد.
به عنوان ساده ترین مثال هم میشه به توکن های JWT اشاره کرد که برای نگهداری زمان انقضا از Epoch Time استفاده میکنن.
چطوری Epoch Time رو به دست بیاریم؟🧮
میتونید به سایت هایی مثل epoch converter مراجعه کنید. این سایت ها امکاناتی مثل تبدیل زمان و نمایش زمان فعلی به شکل Epoch رو دراختیارتون قرار میدن.
همچنین میتونید با زبان برنامه نویسی خودتون هم زمان هارو تبدیل کنید. به طور مثال توی پایتون با کد زیر میشه اینکارو انجام داد:
from datetime import datetime
now = datetime.now()
print(int(datetime.timestamp(now))) >>> 1717069200
نکته جالب: زمان منفی هم داریم!
درسته اگه بخوایم زمان قبل از 1970 رو نشون بدیم Epoch Time مقدار منفی میگیره. مثلا:
-86400 → معادل: 31 دسامبر 1969
جمع بندی✍️
درواقع Epoch Time یعنی تعداد ثانیه هایی که از ۱ ژانویه ۱۹۷۰ میلادی ساعت 00:00:00 گذشته. این روش زمان سنجی توی بیشتر سیستم عامل ها، زبان های برنامه نویسی و دیتابیس ها استفاده میشه و برای اکثر برنامه ها قابل خوندنه. مزیتیش اینه که زمان رو به صورت عددی، دقیق، فشرده و قابل مقایسه ذخیره میکنه و زمان توی Epoch Time میتونه مثبت یا منفی باشه.
#️⃣ #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤5
خب خب خب، مدیریت تنظیمات با Pydantic⚙️
احتمالا اسم Pydantic به گوشتون خورده یا توی پروژه هاتون ازش استفاده کردین. ولی برای مدیریت تنظیمات پروژه از چی استفاده کردین؟ Pydantic یه کلاس به اسم BaseSettings ارائه میده که برای مدیریت تنظیمات برنامه از جمله متغیر های محیطی و پیش فرض ها استفاده میشه.
چرا از BaseSettings استفاده کنیم؟🧐
1️⃣ خواندن خودکار متغیر های محیطی:
با استفاده از BaseSettigns بدون نیاز به کتابخونه های اضافی مثل python-dotenv میتونیم به متغیر های محیطی دسترسی داشته باشیم.
2️⃣ اعتبارسنجی امن و خودکار متغیر ها:
Pydantic به صورت خودکار تایپ هارو چک میکنه و دیگه نیازی به type cast دستی نیست.
3️⃣ پشتیبانی ساده از چند محیط:
با یکم خلاقیت میتونیم چندین کلاس تنظیمات برای محیطهای مختلف مثل Dev, Prod و Test بسازیم.
4️⃣ مناسب برای پروژههای بزرگ:
میشه همهی تنظیمات پروژه مثل دیتابیس، کلیدهای API، حالت دیباگ و... رو توی یک کلاس متمرکز نگهداری کرد و راحت تو کل پروژه استفادهشون کرد.
ساختار پایه ی کلاس تنظیمات🔧
قبل از هر کاری مطمئن بشید که
و بعد میتونید با تعریف کلاس و تنظیماتی که نیاز دارین اونارو مدیریت کنین.
این یعنی:
مقدار debug به طور پیش فرض True هست و بقیه مقادیر باید توی فایل env. یا محیط سیستم تعریف بشن، در غیر این صورت ارور میگیریم. نکته جالب اینه که Pydantic از type cast خودکار پشتیبانی میکنه، مثلا اینجا مقدار "True" توی محیط رو به bool تبدیل میکنه.
و فایل env. باید به این شکل باشه:
نحوه ی استفاده از تنظیمات🛠
میتونیم یه نمونه از کلاس تنظیمات بسازیم و بعد با استفاده از اتریبیوت ها به تنظیمات دسترسی پیدا کنیم:
جمع بندی✍️
کلاس
توی پروژههای بزرگ یا اپلیکیشنهایی که چند محیط (مثل dev، test و prod) دارن، استفاده از این ساختار کمک میکنه کد تمیزتر و حرفهایتری داشته باشین.
➖➖➖➖➖➖➖➖➖➖
احتمالا اسم Pydantic به گوشتون خورده یا توی پروژه هاتون ازش استفاده کردین. ولی برای مدیریت تنظیمات پروژه از چی استفاده کردین؟ Pydantic یه کلاس به اسم BaseSettings ارائه میده که برای مدیریت تنظیمات برنامه از جمله متغیر های محیطی و پیش فرض ها استفاده میشه.
چرا از BaseSettings استفاده کنیم؟🧐
1️⃣ خواندن خودکار متغیر های محیطی:
با استفاده از BaseSettigns بدون نیاز به کتابخونه های اضافی مثل python-dotenv میتونیم به متغیر های محیطی دسترسی داشته باشیم.
2️⃣ اعتبارسنجی امن و خودکار متغیر ها:
Pydantic به صورت خودکار تایپ هارو چک میکنه و دیگه نیازی به type cast دستی نیست.
3️⃣ پشتیبانی ساده از چند محیط:
با یکم خلاقیت میتونیم چندین کلاس تنظیمات برای محیطهای مختلف مثل Dev, Prod و Test بسازیم.
4️⃣ مناسب برای پروژههای بزرگ:
میشه همهی تنظیمات پروژه مثل دیتابیس، کلیدهای API، حالت دیباگ و... رو توی یک کلاس متمرکز نگهداری کرد و راحت تو کل پروژه استفادهشون کرد.
ساختار پایه ی کلاس تنظیمات🔧
قبل از هر کاری مطمئن بشید که
pydantic
و پکیج pydantic-settings
نصب باشن:pip install pydantic pydantic-settings
و بعد میتونید با تعریف کلاس و تنظیماتی که نیاز دارین اونارو مدیریت کنین.
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
model_config = SettingsConfigDict(
env_file='.env', # env file location
)
debug: bool = True
database_url: str
secret_key: str
این یعنی:
مقدار debug به طور پیش فرض True هست و بقیه مقادیر باید توی فایل env. یا محیط سیستم تعریف بشن، در غیر این صورت ارور میگیریم. نکته جالب اینه که Pydantic از type cast خودکار پشتیبانی میکنه، مثلا اینجا مقدار "True" توی محیط رو به bool تبدیل میکنه.
و فایل env. باید به این شکل باشه:
DATABASE_URL=postgresql://user:pass@localhost/dbname
SECRET_KEY=s3cr3t-k3y
نحوه ی استفاده از تنظیمات🛠
میتونیم یه نمونه از کلاس تنظیمات بسازیم و بعد با استفاده از اتریبیوت ها به تنظیمات دسترسی پیدا کنیم:
settings = Settings()
print(settings.database_url)
print(settings.debug)
جمع بندی✍️
کلاس
BaseSettings
یکی از ابزارهای بسیار مهم و کاربردی در Pydantic هست که به شما اجازه میده تنظیمات پروژه رو به شکل متمرکز، امن، قابل تست و قابل توسعه مدیریت کنین.توی پروژههای بزرگ یا اپلیکیشنهایی که چند محیط (مثل dev، test و prod) دارن، استفاده از این ساختار کمک میکنه کد تمیزتر و حرفهایتری داشته باشین.
#️⃣ #programming #python
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍6❤4🔥4
خب خب خب، بهترین فریمورک ها برای توسعه مایکروسرویس🕸
تو دنیای امروز که اپلیکیشنها پیچیدهتر شدن و نیاز به مقیاسپذیری، توسعه سریع و قابلیت نگهداری بالا بیشتر از قبل حس میشه، معماری مایکروسرویس (Microservices) به یکی از محبوبترین انتخابها برای توسعه نرمافزارهای مدرن تبدیل شده.
اما انتخاب فریمورک مناسب برای پیادهسازی مایکروسرویسها خیلی مهمه؛ چون مستقیماً روی سرعت توسعه، پرفورمنس، ساختار پروژه و حتی تجربهی تیم تأثیر میذاره.
Spring Boot (Java)☕️
یکی از محبوبترین انتخابها برای توسعه سرویسهای بزرگ و سازمانی. این فریمورک با ترکیب قدرت Java و اکوسیستم Spring، ساخت سرویسهای مستقل، مقیاسپذیر و امن رو آسون میکنه.
از نقاط قوتش میشه به پشتیبانی گسترده از ابزارهای Enterprise، جامعهی کاربری بسیار بزرگ، مستندات کامل و یکپارچگی فوقالعاده با Spring Cloud اشاره کرد.
FastAPI (Python)⚡️
فریمورکی مدرن و سبک برای ساخت APIهای سریع و خوانا با زبان پایتون. طراحیشده بر پایه ASGI و Starlette و بهشدت روی سرعت و خوانایی تمرکز داره. از مزایای مهمش میتونیم به سرعت بالا، پشتیبانی عالی از Async Programming، مستندسازی خودکار با Swagger و ReDoc، استفاده از type hinting و هماهنگی کامل با استانداردهای OpenAPI اشاره کنیم.
ASP.NET Core (C#)🧱
انتخاب حرفهای برای توسعهدهندگان داتنت، مخصوصاً در پروژههایی که از زیرساختهای Microsoft استفاده میکنن. این فریمورک کاملاً cross-platform هست و روی لینوکس هم عملکرد بالایی داره. پرفورمنس عالی، امنیت بالا، پشتیبانی از WebSocket، gRPC و امکانات کامل برای تولید و دیپلوی مایکروسرویسها از مزایای مهمشه.
Go-Kit (Go)🦾
فریمورکی ساختارمند برای توسعه سرویسهای حرفهای با زبان Go. برخلاف فریمورکهای سبکتر مثل Gin، این ابزار مناسب تیمهایی هست که دنبال معماری تمیز، قابلیت تست بالا، جداسازی concerns و مقیاسپذیری بالا هستن. پشتیبانی از transportهای مختلف (HTTP، gRPC و...)، logging، tracing و monitoring باعث شده انتخاب خوبی برای سیستمهایی با ترافیک بالا باشه.
جمع بندی✍️
انتخاب فریمورک مناسب برای مایکروسرویس به زبان برنامهنویسی، تجربهی تیم، نوع پروژه و زیرساخت فنی بستگی داره. اگر به یک اکوسیستم پایدار و کامل نیاز دارید، Spring Boot یا ASP.NET Core میتونن بهترین انتخاب باشن. اما اگر هدف شما سرعت، سادگی و توسعه سریعتره، FastAPI یا Go-Kit میتونن عملکرد بسیار خوبی داشته باشن.
➖➖➖➖➖➖➖➖➖➖
تو دنیای امروز که اپلیکیشنها پیچیدهتر شدن و نیاز به مقیاسپذیری، توسعه سریع و قابلیت نگهداری بالا بیشتر از قبل حس میشه، معماری مایکروسرویس (Microservices) به یکی از محبوبترین انتخابها برای توسعه نرمافزارهای مدرن تبدیل شده.
اما انتخاب فریمورک مناسب برای پیادهسازی مایکروسرویسها خیلی مهمه؛ چون مستقیماً روی سرعت توسعه، پرفورمنس، ساختار پروژه و حتی تجربهی تیم تأثیر میذاره.
Spring Boot (Java)☕️
یکی از محبوبترین انتخابها برای توسعه سرویسهای بزرگ و سازمانی. این فریمورک با ترکیب قدرت Java و اکوسیستم Spring، ساخت سرویسهای مستقل، مقیاسپذیر و امن رو آسون میکنه.
از نقاط قوتش میشه به پشتیبانی گسترده از ابزارهای Enterprise، جامعهی کاربری بسیار بزرگ، مستندات کامل و یکپارچگی فوقالعاده با Spring Cloud اشاره کرد.
FastAPI (Python)⚡️
فریمورکی مدرن و سبک برای ساخت APIهای سریع و خوانا با زبان پایتون. طراحیشده بر پایه ASGI و Starlette و بهشدت روی سرعت و خوانایی تمرکز داره. از مزایای مهمش میتونیم به سرعت بالا، پشتیبانی عالی از Async Programming، مستندسازی خودکار با Swagger و ReDoc، استفاده از type hinting و هماهنگی کامل با استانداردهای OpenAPI اشاره کنیم.
ASP.NET Core (C#)🧱
انتخاب حرفهای برای توسعهدهندگان داتنت، مخصوصاً در پروژههایی که از زیرساختهای Microsoft استفاده میکنن. این فریمورک کاملاً cross-platform هست و روی لینوکس هم عملکرد بالایی داره. پرفورمنس عالی، امنیت بالا، پشتیبانی از WebSocket، gRPC و امکانات کامل برای تولید و دیپلوی مایکروسرویسها از مزایای مهمشه.
Go-Kit (Go)🦾
فریمورکی ساختارمند برای توسعه سرویسهای حرفهای با زبان Go. برخلاف فریمورکهای سبکتر مثل Gin، این ابزار مناسب تیمهایی هست که دنبال معماری تمیز، قابلیت تست بالا، جداسازی concerns و مقیاسپذیری بالا هستن. پشتیبانی از transportهای مختلف (HTTP، gRPC و...)، logging، tracing و monitoring باعث شده انتخاب خوبی برای سیستمهایی با ترافیک بالا باشه.
جمع بندی✍️
انتخاب فریمورک مناسب برای مایکروسرویس به زبان برنامهنویسی، تجربهی تیم، نوع پروژه و زیرساخت فنی بستگی داره. اگر به یک اکوسیستم پایدار و کامل نیاز دارید، Spring Boot یا ASP.NET Core میتونن بهترین انتخاب باشن. اما اگر هدف شما سرعت، سادگی و توسعه سریعتره، FastAPI یا Go-Kit میتونن عملکرد بسیار خوبی داشته باشن.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤13
خب خب خب، بهترین زبان های برنامه نویسی برای Cloud Programming☁️💻
خب برنامه نویسی ابری یعنی توسعه ی نرم افزارهایی که روی سرویس های ابری مثل AWS, Google Cloud, Azureو... اجرا میشن. توی این فضا مقیاس پذیری، سرعت اجرا، امنیت و پشتیبانی از ابزارهای ابری حرف اول رو میزنن.
Python🐍
به خاطر سادگی و سرعت توسعه، یکی از محبوبترین زبانها برای Cloud محسوب میشه. توی پروژههای مربوط به اتوماسیون، DevOps و مخصوصاً یادگیری ماشین رو سرویسهای ابری مثل AWS یا Google Cloud خیلی خوب جواب میده. اما به خاطر سرعت پایین و محدودیت در پردازشهای سنگین (مثل real-time) برای پروژههای بزرگ انتخاب اول نیست.
Go🚀
زبانیه که دقیقاً برای همین کار ساخته شده. سریع، کممصرف و با پشتیبانی قوی از concurrency، Go گزینهای ایدهآل برای میکروسرویسها، زیرساختهای cloud-native و سرویسهایی با بار بالا محسوب میشه. البته نسبت به پایتون ساده نیست و فضای توسعهش خشکتره.
JavaScript (Node.js)🪩
وقتی با جاوااسکریپت آشنایی داشته باشین، استفاده از Node.js تو Cloud مخصوصاً برای ساخت API و سرورهای سبک یا سرویسهای Serverless خیلی راحته. سرعت توسعه بالاست و پشتیبانی از async بودن ذاتی خیلی به درد میخوره. ولی برای پردازشهای سنگین یا مدیریت منابع در حد enterprise، محدودیت داره.
Java☕️
با وجود قدیمی بودن، هنوزم تو شرکتهای بزرگ برای ساخت سرویسهای پایدار و مقیاسپذیر استفاده میشه. ابزارهایی مثل Spring Boot و Spring Cloud تو فضای ابری خیلی پرکاربردن. قدرت و امنیتش عالیه، ولی کدنویسیش verbose و سنگینتر از زبانهای مدرنتره.
Rust🦀
زبانیه که سرعت و امنیت رو همزمان داره. برای سیستمهایی که performance یا امنیت حافظه خیلی مهمه، انتخاب خوبیه. تو پروژههای زیرساختی یا اپهایی که مصرف منابع براشون مهمه، Rust حرف نداره. البته یادگیریش سخته و جامعهی توسعهدهندههاش هنوز به بزرگی بقیه نیست.
جمع بندی✍️
در نهایت، انتخاب زبان برای Cloud Programming بستگی به نوع پروژه داره؛ اگه دنبال توسعه سریع و ساده هستین، Python و Node.js انتخابای خوبیان. برای سیستمهای سریع و مقیاسپذیر Go میدرخشه، Java برای اپهای پایدار سازمانی مناسبه، و Rust برای پروژههایی با نیاز بالا به performance و امنیت انتخاب آیندهمحوره. مهم اینه بدونین چی میخواین و ابزار مناسب همون رو انتخاب کنین.
➖➖➖➖➖➖➖➖➖➖
خب برنامه نویسی ابری یعنی توسعه ی نرم افزارهایی که روی سرویس های ابری مثل AWS, Google Cloud, Azureو... اجرا میشن. توی این فضا مقیاس پذیری، سرعت اجرا، امنیت و پشتیبانی از ابزارهای ابری حرف اول رو میزنن.
Python🐍
به خاطر سادگی و سرعت توسعه، یکی از محبوبترین زبانها برای Cloud محسوب میشه. توی پروژههای مربوط به اتوماسیون، DevOps و مخصوصاً یادگیری ماشین رو سرویسهای ابری مثل AWS یا Google Cloud خیلی خوب جواب میده. اما به خاطر سرعت پایین و محدودیت در پردازشهای سنگین (مثل real-time) برای پروژههای بزرگ انتخاب اول نیست.
Go🚀
زبانیه که دقیقاً برای همین کار ساخته شده. سریع، کممصرف و با پشتیبانی قوی از concurrency، Go گزینهای ایدهآل برای میکروسرویسها، زیرساختهای cloud-native و سرویسهایی با بار بالا محسوب میشه. البته نسبت به پایتون ساده نیست و فضای توسعهش خشکتره.
JavaScript (Node.js)🪩
وقتی با جاوااسکریپت آشنایی داشته باشین، استفاده از Node.js تو Cloud مخصوصاً برای ساخت API و سرورهای سبک یا سرویسهای Serverless خیلی راحته. سرعت توسعه بالاست و پشتیبانی از async بودن ذاتی خیلی به درد میخوره. ولی برای پردازشهای سنگین یا مدیریت منابع در حد enterprise، محدودیت داره.
Java☕️
با وجود قدیمی بودن، هنوزم تو شرکتهای بزرگ برای ساخت سرویسهای پایدار و مقیاسپذیر استفاده میشه. ابزارهایی مثل Spring Boot و Spring Cloud تو فضای ابری خیلی پرکاربردن. قدرت و امنیتش عالیه، ولی کدنویسیش verbose و سنگینتر از زبانهای مدرنتره.
Rust🦀
زبانیه که سرعت و امنیت رو همزمان داره. برای سیستمهایی که performance یا امنیت حافظه خیلی مهمه، انتخاب خوبیه. تو پروژههای زیرساختی یا اپهایی که مصرف منابع براشون مهمه، Rust حرف نداره. البته یادگیریش سخته و جامعهی توسعهدهندههاش هنوز به بزرگی بقیه نیست.
جمع بندی✍️
در نهایت، انتخاب زبان برای Cloud Programming بستگی به نوع پروژه داره؛ اگه دنبال توسعه سریع و ساده هستین، Python و Node.js انتخابای خوبیان. برای سیستمهای سریع و مقیاسپذیر Go میدرخشه، Java برای اپهای پایدار سازمانی مناسبه، و Rust برای پروژههایی با نیاز بالا به performance و امنیت انتخاب آیندهمحوره. مهم اینه بدونین چی میخواین و ابزار مناسب همون رو انتخاب کنین.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤9
یکی از چالشهایی که خیلی از برنامهنویسها باهاش روبهرو میشن، اینه که بعد از یه مدت طولانی دوری از کدنویسی، حس میکنن مهارتهاشون زنگ زده انگار یه جورایی انگشتاشون دیگه با کیبورد غریبه شده و مفاهیم برنامهنویسی تو ذهنشون غبار گرفته. اما نگران نباشین این پست برای شماست که میخواین دوباره به اوج برگردین و مهارتهای کدنویسیتون رو مثل قبل کنید. بیاین با هم یه نقشه راه بکشیم که چطور میتونیم مهارتهامون رو بازیابی کنیم و دوباره تو دنیای کد به اوج برگردیم🚀
🧠 چرا مهارتها زنگ میزنن؟
اول بذارین خیالتون رو راحت کنم: دوری از کدنویسی کاملاً طبیعیه. شاید سر یه پروژه دیگه بودین، زندگی شخصیتون شلوغ شده یا حتی فقط نیاز به یه استراحت داشتین. اما وقتی برمیگردین، ممکنه حس کنین:
اینا همه عادیان مغز ما مثل عضلهست؛ اگه یه مدت تمرین نکنه، یه کم تنبل میشه، ولی با یه برنامه درست میتونین دوباره رو فرم بیاین.
📚 نقشه راه برای بازیابی مهارتها
1⃣ از پایهها شروع کنین 🏗️
چرا؟ مفاهیم پایهای مثل متغیرها، توابع، و حلقهها ستون هر زبان برنامهنویسیان. مرور اینا ذهنتون رو گرم میکنه.
یه پروژه ساده مثل یه ماشینحساب یا یه برنامه To-Do List با زبانی که قبلاً بلد بودین بنویسین.
2⃣ یه پروژه کوچیک و باحال انتخاب کنین 🎯
چرا؟ پروژههای کوچیک اعتماد به نفس رو برمیگردونن و کمک میکنن حس کنین دوباره تو بازی هستین.
یه چیزی بسازین که بهش علاقه دارین، مثلاً یه اسکریپت پایتون برای خودکار کردن یه کار روزمره یا یه صفحه وب ساده با HTML/CSS.
ایده: یه بات ساده برای تلگرام یا یه برنامه که قیمت ارزها رو نشون بده.
3⃣ ابزارها و تکنولوژیها رو مرور کنین 🛠️
چرا؟ اگه مدت زیادی از فریمورکها (مثل Django یا React) دور بودین، ممکنه آپدیتهاشون غافلگیرتون کنه.
مستندات رسمی (مثل docs.djangoproject.com) یا یه دوره کوتاه تو Udemy یا Pluralsight بگیرین. فقط یه بخش رو مرور کنین، نه کلش
نکته: نیازی نیست همهچیز رو از صفر یاد بگیرین؛ فقط تغییرات جدید رو چک کنین.
4⃣ با حل مسائل تمرین کنین 🧩
چرا؟ حل مسائل الگوریتمی ذهنتون رو قوی میکنه و کمک میکنه منطق کدنویسیتون برگرده.
تو سایتهایی مثل HackerRank، Codewars یا LeetCode سوالهای سطح آسان تا متوسط رو حل کنین. روزی ۱-۲ تا کافیه.
ترفند: یه دفترچه یادداشت داشته باشین و راهحلها رو توضیح بدین تا بهتر جا بیفته.
5⃣ کد دیگران رو بخونین 📖
چرا؟ خوندن کدهای باکیفیت بهتون یادآوری میکنه که کد تمیز چطور نوشته میشه.
پروژههای متنباز تو GitHub (مثل پروژههای پایتون یا جاوااسکریپت) رو بررسی کنین. سعی کنین بفهمین چرا یه تابع خاص یا ساختار خاص استفاده شده.
6⃣ با یه پروژه واقعی برگردین تو رینگ 💪
چرا؟ پروژههای واقعی شما رو مجبور میکنن همهچیز رو کنار هم بذارین: کدنویسی، دیباگ، تست، و کار با ابزارها.
یه اپلیکیشن ساده بسازین، مثلاً یه وبسایت شخصی یا یه API با FastAPI. حتی میتونین تو پروژههای متنباز مشارکت کنین.
نکته: از چیزایی که قبلاً بلد بودین شروع کنین تا اعتماد به نفستون برگرده.
7⃣ با بقیه گپ بزنین 👥
چرا؟ حرف زدن با برنامهنویسهای دیگه بهتون انگیزه میده و ایدههای جدید میآره.
تو گروههای تلگرامی، دیسکورد یا انجمنهای مثل Stack Overflow فعال بشین. حتی یه سوال ساده بپرسین یا جواب بدین.
🔍 نکات طلایی برای برگشتن به اوج
صبور باشین: مثل دوچرخهسواریه؛ یه کم طول میکشه تا دوباره تعادل پیدا کنین.
روزی یه کم: لازم نیست روزی ۸ ساعت کد بزنین. حتی ۳۰ دقیقه تمرین روزانه معجزه میکنه.
لذت ببرین: یه پروژه انتخاب کنین که بهش علاقه دارین تا انگیزهتون بالا بمونه.
✍ جمعبندی
دوری از کدنویسی یه اتفاق عادیه و اصلاً به این معنی نیست که مهارتهاتون غیبشون زده با یه برنامه ساده، مثل مرور پایهها، حل مسائل و ساخت پروژههای کوچیک، میتونین دوباره همون برنامهنویس قبراق و سرحال بشین.
➖➖➖➖➖➖➖➖➖➖
🧠 چرا مهارتها زنگ میزنن؟
اول بذارین خیالتون رو راحت کنم: دوری از کدنویسی کاملاً طبیعیه. شاید سر یه پروژه دیگه بودین، زندگی شخصیتون شلوغ شده یا حتی فقط نیاز به یه استراحت داشتین. اما وقتی برمیگردین، ممکنه حس کنین:
مفاهیم پایهای مثل حلقهها یا ساختار دادهها انگار غریبه شدن.
ابزارها و فریمورکهایی که قبلاً باهاشون راحت بودین، حالا گیجکننده به نظر میان.
اعتماد به نفس کدنویسیتون یه کم افت کرده.
اینا همه عادیان مغز ما مثل عضلهست؛ اگه یه مدت تمرین نکنه، یه کم تنبل میشه، ولی با یه برنامه درست میتونین دوباره رو فرم بیاین.
📚 نقشه راه برای بازیابی مهارتها
1⃣ از پایهها شروع کنین 🏗️
چرا؟ مفاهیم پایهای مثل متغیرها، توابع، و حلقهها ستون هر زبان برنامهنویسیان. مرور اینا ذهنتون رو گرم میکنه.
یه پروژه ساده مثل یه ماشینحساب یا یه برنامه To-Do List با زبانی که قبلاً بلد بودین بنویسین.
2⃣ یه پروژه کوچیک و باحال انتخاب کنین 🎯
چرا؟ پروژههای کوچیک اعتماد به نفس رو برمیگردونن و کمک میکنن حس کنین دوباره تو بازی هستین.
یه چیزی بسازین که بهش علاقه دارین، مثلاً یه اسکریپت پایتون برای خودکار کردن یه کار روزمره یا یه صفحه وب ساده با HTML/CSS.
ایده: یه بات ساده برای تلگرام یا یه برنامه که قیمت ارزها رو نشون بده.
3⃣ ابزارها و تکنولوژیها رو مرور کنین 🛠️
چرا؟ اگه مدت زیادی از فریمورکها (مثل Django یا React) دور بودین، ممکنه آپدیتهاشون غافلگیرتون کنه.
مستندات رسمی (مثل docs.djangoproject.com) یا یه دوره کوتاه تو Udemy یا Pluralsight بگیرین. فقط یه بخش رو مرور کنین، نه کلش
نکته: نیازی نیست همهچیز رو از صفر یاد بگیرین؛ فقط تغییرات جدید رو چک کنین.
4⃣ با حل مسائل تمرین کنین 🧩
چرا؟ حل مسائل الگوریتمی ذهنتون رو قوی میکنه و کمک میکنه منطق کدنویسیتون برگرده.
تو سایتهایی مثل HackerRank، Codewars یا LeetCode سوالهای سطح آسان تا متوسط رو حل کنین. روزی ۱-۲ تا کافیه.
ترفند: یه دفترچه یادداشت داشته باشین و راهحلها رو توضیح بدین تا بهتر جا بیفته.
5⃣ کد دیگران رو بخونین 📖
چرا؟ خوندن کدهای باکیفیت بهتون یادآوری میکنه که کد تمیز چطور نوشته میشه.
پروژههای متنباز تو GitHub (مثل پروژههای پایتون یا جاوااسکریپت) رو بررسی کنین. سعی کنین بفهمین چرا یه تابع خاص یا ساختار خاص استفاده شده.
6⃣ با یه پروژه واقعی برگردین تو رینگ 💪
چرا؟ پروژههای واقعی شما رو مجبور میکنن همهچیز رو کنار هم بذارین: کدنویسی، دیباگ، تست، و کار با ابزارها.
یه اپلیکیشن ساده بسازین، مثلاً یه وبسایت شخصی یا یه API با FastAPI. حتی میتونین تو پروژههای متنباز مشارکت کنین.
نکته: از چیزایی که قبلاً بلد بودین شروع کنین تا اعتماد به نفستون برگرده.
7⃣ با بقیه گپ بزنین 👥
چرا؟ حرف زدن با برنامهنویسهای دیگه بهتون انگیزه میده و ایدههای جدید میآره.
تو گروههای تلگرامی، دیسکورد یا انجمنهای مثل Stack Overflow فعال بشین. حتی یه سوال ساده بپرسین یا جواب بدین.
🔍 نکات طلایی برای برگشتن به اوج
صبور باشین: مثل دوچرخهسواریه؛ یه کم طول میکشه تا دوباره تعادل پیدا کنین.
روزی یه کم: لازم نیست روزی ۸ ساعت کد بزنین. حتی ۳۰ دقیقه تمرین روزانه معجزه میکنه.
لذت ببرین: یه پروژه انتخاب کنین که بهش علاقه دارین تا انگیزهتون بالا بمونه.
✍ جمعبندی
دوری از کدنویسی یه اتفاق عادیه و اصلاً به این معنی نیست که مهارتهاتون غیبشون زده با یه برنامه ساده، مثل مرور پایهها، حل مسائل و ساخت پروژههای کوچیک، میتونین دوباره همون برنامهنویس قبراق و سرحال بشین.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤23
6⃣ پخش و پیشنمایش (Playback) 🎬
با ابزار ffplay میتونین فایلهای چندرسانهای رو پخش کنین.
مثال: پخش یه ویدیو:
چرا کاربردیه؟ ffplay یه پخشکننده سادهست که برای تست سریع فایلها یا بررسی خروجیها عالیه.
7⃣ بررسی اطلاعات فایل (Probing) 🔍
با ffprobe میتونین اطلاعات دقیق یه فایل (مثل کدک، بیتریت، رزولوشن) رو ببینین.
مثال:
چرا کاربردیه؟ برای عیبیابی یا آمادهسازی فایلها قبل از پردازش، این ابزار مثل یه میکروسکوپ عمل میکنه.
8⃣ پشتیبانی از شتابدهندههای سختافزاری ⚡
FFmpeg میتونه از GPU (مثل NVIDIA NVENC/NVDEC، VAAPI، یا OpenCL) برای سرعت بخشیدن به کدگذاری و دیکد استفاده کنه.
مثال: کدگذاری با NVENC:
چرا کاربردیه؟ این قابلیت باعث میشه عملیات سنگین مثل کدگذاری 4K خیلی سریعتر انجام بشه.
9⃣ کار با دستگاههای ورودی 🖥️
میتونین از دستگاههای ورودی مثل وبکم یا کارت کپچر مستقیماً داده بگیرین.
مثال: ضبط از وبکم:
چرا کاربردیه؟ برای ضبط زنده یا استریمینگ از سختافزارهای مختلف عالیه.
🔟 فیلترهای پیشرفته 🎨
FFmpeg کلی فیلتر برای ویرایش ویدیو و صدا داره، مثل تغییر روشنایی، تنظیم سرعت پخش، یا اضافه کردن افکت.
مثال: اضافه کردن متن به ویدیو:
چرا کاربردیه؟ این فیلترها انعطاف زیادی بهتون میدن تا بدون نرمافزارهای گرافیکی، تغییرات پیچیدهای اعمال کنین.
✍ جمعبندی
FFmpeg مثل یه جعبهابزار جادوییه که هر کاری تو دنیای چندرسانهای بخواین، میتونه انجام بده. از تبدیل فرمت و کدگذاری گرفته تا استریمینگ، ویرایش، و حتی کار با سختافزارهای خاص، این ابزار همهفنحریفه.
➖➖➖➖➖➖➖➖➖➖
با ابزار ffplay میتونین فایلهای چندرسانهای رو پخش کنین.
مثال: پخش یه ویدیو:
ffplay video.mp4
چرا کاربردیه؟ ffplay یه پخشکننده سادهست که برای تست سریع فایلها یا بررسی خروجیها عالیه.
7⃣ بررسی اطلاعات فایل (Probing) 🔍
با ffprobe میتونین اطلاعات دقیق یه فایل (مثل کدک، بیتریت، رزولوشن) رو ببینین.
مثال:
ffprobe -show_streams input.mp4
چرا کاربردیه؟ برای عیبیابی یا آمادهسازی فایلها قبل از پردازش، این ابزار مثل یه میکروسکوپ عمل میکنه.
8⃣ پشتیبانی از شتابدهندههای سختافزاری ⚡
FFmpeg میتونه از GPU (مثل NVIDIA NVENC/NVDEC، VAAPI، یا OpenCL) برای سرعت بخشیدن به کدگذاری و دیکد استفاده کنه.
مثال: کدگذاری با NVENC:
ffmpeg -i input.mp4 -c:v h264_nvenc output.mp4
چرا کاربردیه؟ این قابلیت باعث میشه عملیات سنگین مثل کدگذاری 4K خیلی سریعتر انجام بشه.
9⃣ کار با دستگاههای ورودی 🖥️
میتونین از دستگاههای ورودی مثل وبکم یا کارت کپچر مستقیماً داده بگیرین.
مثال: ضبط از وبکم:
ffmpeg -i /dev/video0 output.mp4
چرا کاربردیه؟ برای ضبط زنده یا استریمینگ از سختافزارهای مختلف عالیه.
🔟 فیلترهای پیشرفته 🎨
FFmpeg کلی فیلتر برای ویرایش ویدیو و صدا داره، مثل تغییر روشنایی، تنظیم سرعت پخش، یا اضافه کردن افکت.
مثال: اضافه کردن متن به ویدیو:
ffmpeg -i input.mp4 -vf drawtext="text='سلام دنیا':x=20:y=20:fontsize=24" output.mp4
چرا کاربردیه؟ این فیلترها انعطاف زیادی بهتون میدن تا بدون نرمافزارهای گرافیکی، تغییرات پیچیدهای اعمال کنین.
✍ جمعبندی
FFmpeg مثل یه جعبهابزار جادوییه که هر کاری تو دنیای چندرسانهای بخواین، میتونه انجام بده. از تبدیل فرمت و کدگذاری گرفته تا استریمینگ، ویرایش، و حتی کار با سختافزارهای خاص، این ابزار همهفنحریفه.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍7❤🔥3🔥1
سلام علیک و از این حرفا
انواع مدلهای هوش مصنوعی (سه تا محبوب ترین ها)🧠
امروز میخوام درباره انواع مدلهای یادگیری ماشین صحبت کنم اگه تازه وارد دنیای AI شدین یا میخواین یه شناخت کلی داشته باشین، این پست براتون مناسبه. قراره سه مدل اصلی یادگیری ماشین رو بررسی کنیم: با نظارت (Supervised)، بدون نظارت (Unsupervised) و تقویتی (Reinforcement).
🧠 یادگیری ماشین چیه؟
قبل از اینکه بریم سراغ انواع مدلها، یه توضیح سریع بدم. یادگیری ماشین (Machine Learning) یه شاخه از هوش مصنوعیه که به کامپیوترها یاد میدیم از دادهها یاد بگیرن و تصمیم بگیرن، بدون اینکه صریحاً برنامهریزی بشن. حالا این یادگیری به چند روش انجام میشه که هر کدوم کاربرد خاص خودشون رو دارن.
1⃣ یادگیری با نظارت (Supervised Learning) 👨🏫
تو این روش، مدل با یه مجموعه داده برچسبدار آموزش میبینه. یعنی هر داده یه ورودی (مثل تصویر یا عدد) و یه خروجی مشخص (مثل اسم یا دستهبندی) داره. مدل یاد میگیره که ورودیها رو به خروجیهای درست وصل کنه.
فرض کن داری به مدل یاد میدی که سگ و گربه رو از هم تشخیص بده. بهش یه عالمه عکس سگ و گربه میدی که روشون نوشته "سگ" یا "گربه". مدل از این دادهها الگو پیدا میکنه و بعداً میتونه عکسهای جدید رو دستهبندی کنه.
کاربردها:
دستهبندی (Classification): مثلاً تشخیص اسپم ایمیل (اسپمه یا نه؟).
رگرسیون (Regression):
مثل پیشبینی قیمت خونه.
مزایا:
دقیق، قابلفهم، برای مسائل مشخص عالیه.
معایب:
نیاز به داده برچسبدار داره که جمعآوری و برچسبزنیاش میتونه گرون و زمانبر باشه.
2⃣ یادگیری بدون نظارت (Unsupervised Learning) 🕵️
اینجا دادهها برچسب ندارن مدل باید خودش از دادهها الگو یا ساختار پیدا کنه.
فرض کن یه عالمه داده فروش مشتریها داری، ولی نمیدونی کدوم مشتری تو چه گروهیه. مدل بدون نظارت میتونه مشتریها رو بر اساس رفتارشون (مثلاً خریدهای مشابه) گروهبندی کنه (مثلا گروه های لوازم خانگی یا گروه مواد غذایی).
کاربردها:
خوشهبندی (Clustering):
مثل گروهبندی مشتریها برای بازاریابی.
کاهش ابعاد (Dimensionality Reduction):
مثل سادهسازی دادههای پیچیده برای تحلیل.
مزایا:
نیازی به برچسب نداره، برای دادههای بزرگ و ناشناخته عالیه.
معایب:
نتایجش گاهی مبهمه و نیاز به تحلیل بیشتر داره.
3⃣ یادگیری تقویتی (Reinforcement Learning) 🎮
تو این روش، مدل مثل یه بازیکن تو یه بازی عمل میکنه. با آزمون و خطا یاد میگیره که چه کارهایی پاداش (reward) بیشتری دارن و سعی میکنه پاداشش رو به حداکثر برسونه.
مدل تو یه محیط (environment) تصمیم میگیره، نتیجه رو میبینه (پاداش یا جریمه) و رفتارش رو بهتر میکنه. مثلاً یه ربات یاد میگیره چطور راه بره بدون اینکه زمین بخوره.
کاربردها:
رباتیک:
مثل آموزش ربات برای جابهجایی اشیا.
بازیها:
مثل AlphaGo که شطرنج و گو رو یاد گرفت.
سیستمهای پیشنهاددهنده:
مثل پیشنهاد ویدیو تو یوتیوب.
مزایا:
برای مسائل پیچیده و پویا (مثل بازیها) عالیه.
معایب:
آموزشش زمانبره و نیاز به محاسبات و ازمون خطای سنگین داره.
🚀 چرا این مدلها مهمان؟
(ما به الگوریتم های ترینینگ هوش مصنوعی میگیم مدل)
هر کدوم از این مدلها برای یه سری مشکلات خاص طراحی شدن:
با نظارت:
وقتی دادههای برچسبدار داری و میخوای پیشبینی دقیق کنی.
بدون نظارت:
وقتی دادههای زیادی داری، ولی نمیدونی چه الگویی توشونه.
تقویتی:
وقتی میخوای یه سیستم یاد بگیره خودش تصمیمهای بهینه بگیره.
این مدلها تو همهچیز از تشخیص چهره تو گوشیتون گرفته تا پیشنهاد فیلم تو نتفلیکس و رباتهای خودران استفاده میشن. دنیای AI بدون اینا عملاً نمیچرخه.
✍ جمعبندی
مدلهای با نظارت، بدون نظارت و تقویتی مثل سه تا ابزارن که هر کدوم یه گوشه از مشکلات دنیای داده رو حل میکنن. اگه تازهکارین، پیشنهاد میکنم با یه پروژه ساده (مثل دستهبندی با Scikit-learn) شروع کنین و کمکم برین سراغ مسائل پیچیدهتر. دنیای یادگیری ماشین واقعا زیباست. :)))
➖➖➖➖➖➖➖➖➖➖
انواع مدلهای هوش مصنوعی (سه تا محبوب ترین ها)🧠
امروز میخوام درباره انواع مدلهای یادگیری ماشین صحبت کنم اگه تازه وارد دنیای AI شدین یا میخواین یه شناخت کلی داشته باشین، این پست براتون مناسبه. قراره سه مدل اصلی یادگیری ماشین رو بررسی کنیم: با نظارت (Supervised)، بدون نظارت (Unsupervised) و تقویتی (Reinforcement).
🧠 یادگیری ماشین چیه؟
قبل از اینکه بریم سراغ انواع مدلها، یه توضیح سریع بدم. یادگیری ماشین (Machine Learning) یه شاخه از هوش مصنوعیه که به کامپیوترها یاد میدیم از دادهها یاد بگیرن و تصمیم بگیرن، بدون اینکه صریحاً برنامهریزی بشن. حالا این یادگیری به چند روش انجام میشه که هر کدوم کاربرد خاص خودشون رو دارن.
1⃣ یادگیری با نظارت (Supervised Learning) 👨🏫
تو این روش، مدل با یه مجموعه داده برچسبدار آموزش میبینه. یعنی هر داده یه ورودی (مثل تصویر یا عدد) و یه خروجی مشخص (مثل اسم یا دستهبندی) داره. مدل یاد میگیره که ورودیها رو به خروجیهای درست وصل کنه.
فرض کن داری به مدل یاد میدی که سگ و گربه رو از هم تشخیص بده. بهش یه عالمه عکس سگ و گربه میدی که روشون نوشته "سگ" یا "گربه". مدل از این دادهها الگو پیدا میکنه و بعداً میتونه عکسهای جدید رو دستهبندی کنه.
کاربردها:
دستهبندی (Classification): مثلاً تشخیص اسپم ایمیل (اسپمه یا نه؟).
رگرسیون (Regression):
مثل پیشبینی قیمت خونه.
مزایا:
دقیق، قابلفهم، برای مسائل مشخص عالیه.
معایب:
نیاز به داده برچسبدار داره که جمعآوری و برچسبزنیاش میتونه گرون و زمانبر باشه.
2⃣ یادگیری بدون نظارت (Unsupervised Learning) 🕵️
اینجا دادهها برچسب ندارن مدل باید خودش از دادهها الگو یا ساختار پیدا کنه.
فرض کن یه عالمه داده فروش مشتریها داری، ولی نمیدونی کدوم مشتری تو چه گروهیه. مدل بدون نظارت میتونه مشتریها رو بر اساس رفتارشون (مثلاً خریدهای مشابه) گروهبندی کنه (مثلا گروه های لوازم خانگی یا گروه مواد غذایی).
کاربردها:
خوشهبندی (Clustering):
مثل گروهبندی مشتریها برای بازاریابی.
کاهش ابعاد (Dimensionality Reduction):
مثل سادهسازی دادههای پیچیده برای تحلیل.
مزایا:
نیازی به برچسب نداره، برای دادههای بزرگ و ناشناخته عالیه.
معایب:
نتایجش گاهی مبهمه و نیاز به تحلیل بیشتر داره.
3⃣ یادگیری تقویتی (Reinforcement Learning) 🎮
تو این روش، مدل مثل یه بازیکن تو یه بازی عمل میکنه. با آزمون و خطا یاد میگیره که چه کارهایی پاداش (reward) بیشتری دارن و سعی میکنه پاداشش رو به حداکثر برسونه.
مدل تو یه محیط (environment) تصمیم میگیره، نتیجه رو میبینه (پاداش یا جریمه) و رفتارش رو بهتر میکنه. مثلاً یه ربات یاد میگیره چطور راه بره بدون اینکه زمین بخوره.
کاربردها:
رباتیک:
مثل آموزش ربات برای جابهجایی اشیا.
بازیها:
مثل AlphaGo که شطرنج و گو رو یاد گرفت.
سیستمهای پیشنهاددهنده:
مثل پیشنهاد ویدیو تو یوتیوب.
مزایا:
برای مسائل پیچیده و پویا (مثل بازیها) عالیه.
معایب:
آموزشش زمانبره و نیاز به محاسبات و ازمون خطای سنگین داره.
🚀 چرا این مدلها مهمان؟
(ما به الگوریتم های ترینینگ هوش مصنوعی میگیم مدل)
هر کدوم از این مدلها برای یه سری مشکلات خاص طراحی شدن:
با نظارت:
وقتی دادههای برچسبدار داری و میخوای پیشبینی دقیق کنی.
بدون نظارت:
وقتی دادههای زیادی داری، ولی نمیدونی چه الگویی توشونه.
تقویتی:
وقتی میخوای یه سیستم یاد بگیره خودش تصمیمهای بهینه بگیره.
این مدلها تو همهچیز از تشخیص چهره تو گوشیتون گرفته تا پیشنهاد فیلم تو نتفلیکس و رباتهای خودران استفاده میشن. دنیای AI بدون اینا عملاً نمیچرخه.
✍ جمعبندی
مدلهای با نظارت، بدون نظارت و تقویتی مثل سه تا ابزارن که هر کدوم یه گوشه از مشکلات دنیای داده رو حل میکنن. اگه تازهکارین، پیشنهاد میکنم با یه پروژه ساده (مثل دستهبندی با Scikit-learn) شروع کنین و کمکم برین سراغ مسائل پیچیدهتر. دنیای یادگیری ماشین واقعا زیباست. :)))
#️⃣ #ai #ml #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤11
سام علیک و از این حرفا Github Actions 🎬
حتماً اسم GitHub Actions به گوشتون خورده این ابزار میتونه خیلی از کارهای تکراری و روتین پروژهتون رو خودکار کنه، بدون اینکه لازم باشه خودتون دست به کار بشین. از بررسی کدهای کامیتشده تا اجرای تستها و دیپلوی خودکار، همهچیز رو میسپارین بهش و خیالتون راحته تو این پست قراره حسابی راجب GitHub Actions حرف بزنیم، ببینیم این ابزار چیه، چه کارایی میتونه بکنه و چرا باید یه پای ثابت تو هر رپوی برنامهنویسی باشه.
🧠اول از همه GitHub Actions چیه؟
GitHub Actions یه پلتفرم اتوماسیونه که مستقیم تو GitHub ادغام شده و بهتون اجازه میده workflow خودکار برای پروژههاتون بسازین. این ابزار برای CI/CD (ادغام مداوم و تحویل/استقرار مداوم) (همیشه انگلیسی رو به معادل فارسی ترجیح میدم) طراحی شده، ولی فقط به این محدود نیست، میتونه هر کاری از تست کد و دیپلوی اپلیکیشن تا مدیریت مسائل (issues) و حتی ارسال نوتیفیکیشن رو خودکار کنه. به زبان ساده، GitHub Actions مثل یه رباته که با یه سری دستور (نوشتهشده با YAML) بهش میگین چیکار کنه.
این ابزار از سال ۲۰۱۸ توسط GitHub معرفی شد و حالا یکی از محبوبترین ابزارهای اتوماسیون تو اکوسیستم توسعه نرمافزاره، چون هم قدرتمنده، هم انعطافپذیره و هم با خود GitHub جوش خورده.
📚 قابلیتهای کلیدی GitHub Actions
1⃣ CI/CD (ادغام و تحویل مداوم) 🛠️
میتونین پایپ لاینهایی بسازین که کدتون رو بهصورت خودکار بیلد، تست و دیپلوی کنه.
مثال:
هر بار که یه تغییر (push) تو شاخه main میکنین، کد بیلد بشه، تستها اجرا بشن و اگه همهچیز اوکی بود، به سرور production دیپلوی بشه.
2⃣ اتوماسیون وظایف مختلف ⚙️
فراتر از CI/CD، میتونین هر کار تکراری رو خودکار کنین، مثل اضافه کردن لیبل به issues یا ارسال نوتیف به اسلک.
مثال:
وقتی یه issue جدید باز میشه، بهصورت خودکار لیبل "triage" بهش اضافه بشه:
3⃣ پشتیبانی از چند پلتفرم 🖥️
GitHub Actions روی ماشینهای مجازی لینوکس، ویندوز و مک اجرا میشه. حتی میتونین self-hosted runners (ماشینهای خودتون) رو استفاده کنین.
مثال: تست کد روی نسخههای مختلف پایتون و سیستمعاملها با یه matrix workflow:
4⃣ اکشنهای آماده و Marketplace 🛒
یه عالمه اکشن آماده تو GitHub Marketplace وجود داره که میتونین مستقیم تو ورکفلاتون استفاده کنین.
مثال: اکشن برای ارسال نوتیفیکیشن به اسلک یا دیپلوی به AWS.
✍ جمعبندی
GitHub Actions یه ابزار قدرتمند و انعطافپذیره که میتونه پروژههاتون رو از یه مجموعه کد ساده به یه سیستم خودکار و حرفهای تبدیل کنه. از CI/CD و تست چندپلتفرمی گرفته تا اتوماسیون کارهای روزمره مثل ارسال اعلان یا مدیریت مسائل، این ابزار همهچیز رو تو یه پکیج بهتون میده. فقط کافیه یه فایل YAML بسازین.
اگه خواستین بیشتر درمودش صحبت بکنم و نکات حرفه ای تری بگم با ریکشن و شیر این پست رو حمایت کنید 😊❤️
➖➖➖➖➖➖➖➖➖➖
حتماً اسم GitHub Actions به گوشتون خورده این ابزار میتونه خیلی از کارهای تکراری و روتین پروژهتون رو خودکار کنه، بدون اینکه لازم باشه خودتون دست به کار بشین. از بررسی کدهای کامیتشده تا اجرای تستها و دیپلوی خودکار، همهچیز رو میسپارین بهش و خیالتون راحته تو این پست قراره حسابی راجب GitHub Actions حرف بزنیم، ببینیم این ابزار چیه، چه کارایی میتونه بکنه و چرا باید یه پای ثابت تو هر رپوی برنامهنویسی باشه.
🧠اول از همه GitHub Actions چیه؟
GitHub Actions یه پلتفرم اتوماسیونه که مستقیم تو GitHub ادغام شده و بهتون اجازه میده workflow خودکار برای پروژههاتون بسازین. این ابزار برای CI/CD (ادغام مداوم و تحویل/استقرار مداوم) (همیشه انگلیسی رو به معادل فارسی ترجیح میدم) طراحی شده، ولی فقط به این محدود نیست، میتونه هر کاری از تست کد و دیپلوی اپلیکیشن تا مدیریت مسائل (issues) و حتی ارسال نوتیفیکیشن رو خودکار کنه. به زبان ساده، GitHub Actions مثل یه رباته که با یه سری دستور (نوشتهشده با YAML) بهش میگین چیکار کنه.
این ابزار از سال ۲۰۱۸ توسط GitHub معرفی شد و حالا یکی از محبوبترین ابزارهای اتوماسیون تو اکوسیستم توسعه نرمافزاره، چون هم قدرتمنده، هم انعطافپذیره و هم با خود GitHub جوش خورده.
📚 قابلیتهای کلیدی GitHub Actions
1⃣ CI/CD (ادغام و تحویل مداوم) 🛠️
میتونین پایپ لاینهایی بسازین که کدتون رو بهصورت خودکار بیلد، تست و دیپلوی کنه.
مثال:
هر بار که یه تغییر (push) تو شاخه main میکنین، کد بیلد بشه، تستها اجرا بشن و اگه همهچیز اوکی بود، به سرور production دیپلوی بشه.
name: CI Pipeline
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: pip install -r requirements.txt
- name: Run tests
run: pytest
2⃣ اتوماسیون وظایف مختلف ⚙️
فراتر از CI/CD، میتونین هر کار تکراری رو خودکار کنین، مثل اضافه کردن لیبل به issues یا ارسال نوتیف به اسلک.
مثال:
وقتی یه issue جدید باز میشه، بهصورت خودکار لیبل "triage" بهش اضافه بشه:
name: Auto Label Issues
on:
issues:
types: [opened]
jobs:
label:
runs-on: ubuntu-latest
steps:
- uses: actions/github-script@v6
with:
script: |
github.rest.issues.addLabels({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
labels: ['triage']
})
3⃣ پشتیبانی از چند پلتفرم 🖥️
GitHub Actions روی ماشینهای مجازی لینوکس، ویندوز و مک اجرا میشه. حتی میتونین self-hosted runners (ماشینهای خودتون) رو استفاده کنین.
مثال: تست کد روی نسخههای مختلف پایتون و سیستمعاملها با یه matrix workflow:
name: Test on Multiple Platforms
on: [push]
jobs:
test:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python-version: ['3.8', '3.9', '3.10']
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Run tests
run: pytest
4⃣ اکشنهای آماده و Marketplace 🛒
یه عالمه اکشن آماده تو GitHub Marketplace وجود داره که میتونین مستقیم تو ورکفلاتون استفاده کنین.
مثال: اکشن برای ارسال نوتیفیکیشن به اسلک یا دیپلوی به AWS.
- name: Notify Slack
uses: slackapi/slack-github-action@v1.23.0
with:
slack-bot-token: ${{ secrets.SLACK_BOT_TOKEN }}
channel-id: 'my-channel'
text: 'New deployment completed!'
✍ جمعبندی
GitHub Actions یه ابزار قدرتمند و انعطافپذیره که میتونه پروژههاتون رو از یه مجموعه کد ساده به یه سیستم خودکار و حرفهای تبدیل کنه. از CI/CD و تست چندپلتفرمی گرفته تا اتوماسیون کارهای روزمره مثل ارسال اعلان یا مدیریت مسائل، این ابزار همهچیز رو تو یه پکیج بهتون میده. فقط کافیه یه فایل YAML بسازین.
اگه خواستین بیشتر درمودش صحبت بکنم و نکات حرفه ای تری بگم با ریکشن و شیر این پست رو حمایت کنید 😊❤️
#️⃣ #web #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤11👍3
چرا Async تو کار با دیتابیس همیشه کار امد نیست؟ 🧵
یه باور رایج بین برنامهنویس ها اینه که استفاده از Async (برنامهنویسی ناهمزمان) تو همهچیز معجزه میکنه، مخصوصاً وقتی با دیتابیس کار میکنین. اما میدونستید که Async زدن کد برای کار با دیتابیس همیشه اون تأثیر که فکر میکنید رو نداره؟ تو این پست قراره ببینیم چرا.
🧠 چرا Async تو دیتابیس تأثیر کمی داره؟
وقتی با دیتابیس کار میکنین (مثل PostgreSQL، MySQL یا MongoDB)، عملیاتها مثل خوندن (SELECT)، نوشتن (INSERT) یا آپدیت کردن معمولاً CPU-bound هستن، نه I/O-bound. حالا این یعنی چی؟
CPU-bound:
یعنی گلوگاه اصلی تو عملیات، پردازش CPUئه. مثلاً وقتی یه کوئری SQL اجرا میکنی، دیتابیس باید کارایی مثل پارس کردن کوئری، بهینهسازی پلن، پردازش دادهها و مرتبسازی رو انجام بده. اینا همشون به CPU وابستهان.
I/O-bound:
یعنی گلوگاه اصلی منتظر موندن برای ورودی/خروجی (مثل خوندن از دیسک یا شبکه). Async تو این سناریوها خوب عمل میکنه چون میتونه CPU رو آزاد کنه تا وقتی منتظر I/O هستیم، کارهای دیگه انجام بده.
دیتابیسها معمولاً تو محیطهای خودشون بهینه شدن که عملیات CPU-bound رو سریع انجام بدن (مثل استفاده از ایندکسها یا کش). برای همین، وقتی از یه کلاینت (مثل یه برنامه پایتون) به دیتابیس وصل میشین، بیشتر زمان صرف پردازش کوئری تو خود دیتابیسه، نه منتظر شبکه یا دیسک. حالا Async (مثل
مثال ساده:
فرض کنین یه کوئری سنگین مثل این تو PostgreSQL دارین:
این کوئری CPU دیتابیس رو حسابی درگیر میکنه (برای فیلتر کردن و مرتبسازی). حالا اگه تو پایتون اینو با یه کلاینت sync (مثل
📚 چرا Async همیشه مفید نیست؟
وقتی از یه کلاینت Async استفاده میکنین (مثل
1⃣ گلوگاه تو دیتابیسه:
همونطور که گفتم، بیشتر عملیات دیتابیس CPU-bound هستن. Async فقط میتونه I/O شبکه رو مدیریت کنه (مثل زمان ارسال کوئری یا گرفتن نتیجه)، ولی این بخش معمولاً کسری از کل زمانه.
2⃣ Overhead خود Async: استفاده از
3⃣ مدیریت اتصالات:
دیتابیسها معمولاً تعداد اتصالات همزمان (connection pool) رو محدود میکنن. حتی با Async، اگه تعداد کوئریها زیاد باشه، ممکنه منتظر اتصال بمونین.
🔍 کی Async به کار میاد؟
هرچند Async تو اکثر عملیات دیتابیس تأثیر زیادی نداره، تو یه سری سناریوها میتونه خوب عمل کنه:
1⃣ دیتابیسهای توزیعشده:
تو دیتابیسهای NoSQL مثل MongoDB یا Cassandra که عملیات شبکهای (مثل اتصال به نودهای مختلف) زمانبره، Async میتونه کمک کنه کلاینت همزمان چند درخواست رو مدیریت کنه.
2⃣ عملیات I/O-heavy:
اگه دیتابیستون روی یه سرور دور باشه یا شبکه کند باشه، Async میتونه زمان انتظار برای اتصال و انتقال داده رو بهتر مدیریت کنه.
3⃣ چندین درخواست همزمان:
اگه برنامهتون نیاز داره چند کوئری رو بهصورت موازی اجرا کنه (مثل یه API که باید از چند جدول داده جمع کنه)، Async میتونه این درخواستها رو همزمان مدیریت کنه.
4⃣ دیتابیسهای خاص:
بعضی دیتابیسها مثل CockroachDB یا Redis که برای عملیات سریع و توزیعشده طراحی شدن، با کلاینتهای Async بهتر کار میکنن.
✍ جمعبندی
اینکه بگیم Async تو کار با دیتابیس معجزه میکنه یه کم زیادهرویه چون بیشتر عملیات دیتابیس CPU-bound هستن، استفاده از کلاینتهای Async مثل asyncpg یا motor معمولاً تأثیر چشمگیری روی پرفورمنس نداره. اما تو سناریوهای خاص مثل دیتابیسهای توزیعشده، عملیات شبکهمحور یا درخواستهای موازی، Async میتونه مفید باشه. پس قبل از اینکه همهچیز رو Async کنین، نوع عملیاتتون رو بررسی کنین و ببینین کجا واقعاً به کارتون میاد.
➖➖➖➖➖➖➖➖➖➖
یه باور رایج بین برنامهنویس ها اینه که استفاده از Async (برنامهنویسی ناهمزمان) تو همهچیز معجزه میکنه، مخصوصاً وقتی با دیتابیس کار میکنین. اما میدونستید که Async زدن کد برای کار با دیتابیس همیشه اون تأثیر که فکر میکنید رو نداره؟ تو این پست قراره ببینیم چرا.
🧠 چرا Async تو دیتابیس تأثیر کمی داره؟
وقتی با دیتابیس کار میکنین (مثل PostgreSQL، MySQL یا MongoDB)، عملیاتها مثل خوندن (SELECT)، نوشتن (INSERT) یا آپدیت کردن معمولاً CPU-bound هستن، نه I/O-bound. حالا این یعنی چی؟
CPU-bound:
یعنی گلوگاه اصلی تو عملیات، پردازش CPUئه. مثلاً وقتی یه کوئری SQL اجرا میکنی، دیتابیس باید کارایی مثل پارس کردن کوئری، بهینهسازی پلن، پردازش دادهها و مرتبسازی رو انجام بده. اینا همشون به CPU وابستهان.
I/O-bound:
یعنی گلوگاه اصلی منتظر موندن برای ورودی/خروجی (مثل خوندن از دیسک یا شبکه). Async تو این سناریوها خوب عمل میکنه چون میتونه CPU رو آزاد کنه تا وقتی منتظر I/O هستیم، کارهای دیگه انجام بده.
دیتابیسها معمولاً تو محیطهای خودشون بهینه شدن که عملیات CPU-bound رو سریع انجام بدن (مثل استفاده از ایندکسها یا کش). برای همین، وقتی از یه کلاینت (مثل یه برنامه پایتون) به دیتابیس وصل میشین، بیشتر زمان صرف پردازش کوئری تو خود دیتابیسه، نه منتظر شبکه یا دیسک. حالا Async (مثل
async/await
تو پایتون) اینجا کمک زیادی نمیکنه، چون CPU داره کار اصلی رو انجام میده و چیزی برای "منتظر موندن" وجود نداره.مثال ساده:
فرض کنین یه کوئری سنگین مثل این تو PostgreSQL دارین:
SELECT * FROM orders WHERE total > 1000 ORDER BY created_at;
این کوئری CPU دیتابیس رو حسابی درگیر میکنه (برای فیلتر کردن و مرتبسازی). حالا اگه تو پایتون اینو با یه کلاینت sync (مثل
psycopg2
) یا async (مثل asyncpg
) اجرا کنین، تفاوت سرعت خیلی کمه، چون گلوگاه اصلی تو خود دیتابیسه، نه تو کلاینت.📚 چرا Async همیشه مفید نیست؟
وقتی از یه کلاینت Async استفاده میکنین (مثل
asyncpg
یا motor
برای MongoDB)، انتظار دارین عملیات دیتابیس سریعتر بشه چون میتونه همزمان کارهای دیگه رو انجام بده. اما چندتا دلیل باعث میشه این تأثیر کم باشه:1⃣ گلوگاه تو دیتابیسه:
همونطور که گفتم، بیشتر عملیات دیتابیس CPU-bound هستن. Async فقط میتونه I/O شبکه رو مدیریت کنه (مثل زمان ارسال کوئری یا گرفتن نتیجه)، ولی این بخش معمولاً کسری از کل زمانه.
2⃣ Overhead خود Async: استفاده از
async/await
یه مقدار سربار (overhead) به کد اضافه میکنه. اگه عملیات دیتابیستون سریع باشه (مثلاً چند میلیثانیه)، این سربار ممکنه حتی باعث شه Async کندتر بشه.3⃣ مدیریت اتصالات:
دیتابیسها معمولاً تعداد اتصالات همزمان (connection pool) رو محدود میکنن. حتی با Async، اگه تعداد کوئریها زیاد باشه، ممکنه منتظر اتصال بمونین.
🔍 کی Async به کار میاد؟
هرچند Async تو اکثر عملیات دیتابیس تأثیر زیادی نداره، تو یه سری سناریوها میتونه خوب عمل کنه:
1⃣ دیتابیسهای توزیعشده:
تو دیتابیسهای NoSQL مثل MongoDB یا Cassandra که عملیات شبکهای (مثل اتصال به نودهای مختلف) زمانبره، Async میتونه کمک کنه کلاینت همزمان چند درخواست رو مدیریت کنه.
2⃣ عملیات I/O-heavy:
اگه دیتابیستون روی یه سرور دور باشه یا شبکه کند باشه، Async میتونه زمان انتظار برای اتصال و انتقال داده رو بهتر مدیریت کنه.
3⃣ چندین درخواست همزمان:
اگه برنامهتون نیاز داره چند کوئری رو بهصورت موازی اجرا کنه (مثل یه API که باید از چند جدول داده جمع کنه)، Async میتونه این درخواستها رو همزمان مدیریت کنه.
4⃣ دیتابیسهای خاص:
بعضی دیتابیسها مثل CockroachDB یا Redis که برای عملیات سریع و توزیعشده طراحی شدن، با کلاینتهای Async بهتر کار میکنن.
✍ جمعبندی
اینکه بگیم Async تو کار با دیتابیس معجزه میکنه یه کم زیادهرویه چون بیشتر عملیات دیتابیس CPU-bound هستن، استفاده از کلاینتهای Async مثل asyncpg یا motor معمولاً تأثیر چشمگیری روی پرفورمنس نداره. اما تو سناریوهای خاص مثل دیتابیسهای توزیعشده، عملیات شبکهمحور یا درخواستهای موازی، Async میتونه مفید باشه. پس قبل از اینکه همهچیز رو Async کنین، نوع عملیاتتون رو بررسی کنین و ببینین کجا واقعاً به کارتون میاد.
#️⃣ #web #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
🔥10❤3👍2👎1
این داستان Query Planning 😯
احتمالا با دیتابیس هایی مثل PostgreSQL یا MySQL کوئری زدین، اگه دقت کرده باشید این کوری ها چه ساده باشن چه پیچیده سریع اجرا میشن، دلیلشم تو یه فرایند جالب به اسم Query Planning هست.
تو این پست قراره ببینیم چیه، چطور کار میکنه.
🧠 Query Planning چیه؟
Query Planning (یا برنامهریزی کوئری) فرایندی تو دیتابیسهای رابطهایه که توش دیتابیس تصمیم میگیره بهترین راه برای اجرای یه کوئری SQL چیه. وقتی یه کوئری مثل
مینویسین، دیتابیس نمیره مستقیم اجرا کنه؛ اول یه نقشه میکشه که چطور دادهها رو پیدا کنه، فیلتر کنه و برگردونه. این نقشه که بهش Query Plan یا Execution Plan میگن، مثل یه GPSه که به دیتابیس میگه از کدوم مسیر بره تا سریعتر به مقصد برسه.
هدف اصلیش بهینهسازی پرفورمنس با کم کردن زمان اجرا، مصرف CPU، حافظه و I/O (خوندن/نوشتن دیسک). دیتابیس این کار رو با تحلیل ساختار کوئری، آمار جدولها و ایندکسها انجام میده.
📚 Query Planning چطور کار میکنه؟
دیتابیسها (مثل PostgreSQL، MySQL، SQL Server) یه بخش به اسم Query Optimizer دارن که مسئول ساختن پلن بهینهست. بیاین قدمبهقدم ببینیم چی به چیه:
1⃣ پارس کردن کوئری (Parsing)
دیتابیس اول کوئری رو بررسی میکنه تا مطمئن شه درست نوشته شده (از نظر گرامری و معنایی). مثلاً چک میکنه جدول
خروجی این مرحله یه درخت نحوی (parse tree)ه که ساختار کوئری رو نشون میده.
2⃣ بازنویسی کوئری (Rewriting)
تو این مرحله، دیتابیس کوئری رو سادهتر یا بهینهتر میکنه، بدون اینکه نتیجهش تغییر کنه. مثلاً:
تبدیل ساب کوری ها به جوینها.
حذف شرطهای اضافی (مثل
تو PostgreSQL، این کار توسط Query Rewriter انجام میشه.
3⃣ تولید پلنهای ممکن (Plan Generation)
حالا Query Optimizer کلی پلن ممکن برای اجرای کوئری میسازه. مثلاً برای یه کوئری ساده:
ممکنه این گزینهها بررسی شه:
Sequential Scan:
کل جدول رو خطبهخط بخونه.
Index Scan:
از ایندکس روی ستون
Bitmap Scan:
ترکیبی از ایندکس و اسکن.
برای کوئریهای پیچیده (با جوین، گروهبندی و غیره)، تعداد پلنها میتونه به هزارتا برسه
4️⃣ تخمین هزینه (Cost Estimation)
دیتابیس برای هر پلن یه هزینه (cost) تخمین میزنه. این هزینه یه عدد خیالیه که شامل:
مصرف CPU (برای مقایسهها، مرتبسازی و غیره).
I/O (خوندن از دیسک یا کش).
شبکه (اگه دیتابیس توزیعشده باشه).
دیتابیس از آمار جدولها (مثل تعداد ردیفها، توزیع دادهها) و ساختار ایندکسها برای این تخمین استفاده میکنه.
مثلاً تو PostgreSQL، دستور
5️⃣ انتخاب بهترین پلن
Optimizer پلنی رو انتخاب میکنه که کمترین هزینه رو داره. این پلن میشه Execution Plan و برای اجرا به Executor فرستاده میشه.
تو بعضی دیتابیسها (مثل Oracle)، میتونین از hints استفاده کنین تا Optimizer رو به یه پلن خاص هدایت کنین.
6️⃣ اجرا و بازخورد
بعد از اجرا، دیتابیس ممکنه بازخورد بگیره (مثلاً آمار واقعی تعداد ردیفها) و پلنهای بعدی رو بهتر کنه.
🛠 چرا Query Planning مهمه؟
Query Planning مثل مغز دیتابیسه و مستقیم روی پرفورمنس تأثیر میذاره:
سرعت: یه پلن خوب میتونه یه کوئری رو از چند دقیقه به چند میلیثانیه برسونه.
مصرف منابع: پلن بد میتونه CPU و دیسک رو بیخودی درگیر کنه و سرور رو خفه کنه.
مقیاسپذیری: تو دیتابیسهای بزرگ با میلیونها ردیف، یه پلن بهینه فرق بین موفقیت و فاجعهست.
تجربه کاربر: اگه APIتون به یه دیتابیس کند وصل باشه، کاربراتون فرار میکنن
🔍 مشکلات رایج تو Query Planning
آمار قدیمی: اگه آمار جدولها بهروز نباشه، Optimizer ممکنه پلن بد انتخاب کنه.
کوئریهای پیچیده: جوینهای چندگانه یا شرطهای مبهم میتونن Optimizer رو گیج کنن.
عدم ایندکس: بدون ایندکس، دیتابیس مجبوره کل جدول رو اسکن کنه.
دیتابیسهای توزیعشده:
تو دیتابیسهایی مثل CockroachDB، شبکه هم به معادله اضافه میشه و پلنها پیچیدهتر میشن.
✍ جمعبندی
Query Planning مثل یه شطرنجباز حرفهایه که تو دیتابیس تصمیم میگیره بهترین حرکت چیه. با تحلیل کوئری، آمار جدولها و ایندکسها، یه پلن بهینه میسازه که میتونه سرعت و کارایی پروژهتون رو زیر و رو کنه.
➖➖➖➖➖➖➖➖➖➖
احتمالا با دیتابیس هایی مثل PostgreSQL یا MySQL کوئری زدین، اگه دقت کرده باشید این کوری ها چه ساده باشن چه پیچیده سریع اجرا میشن، دلیلشم تو یه فرایند جالب به اسم Query Planning هست.
تو این پست قراره ببینیم چیه، چطور کار میکنه.
🧠 Query Planning چیه؟
Query Planning (یا برنامهریزی کوئری) فرایندی تو دیتابیسهای رابطهایه که توش دیتابیس تصمیم میگیره بهترین راه برای اجرای یه کوئری SQL چیه. وقتی یه کوئری مثل
SELECT * FROM users WHERE age > 30
مینویسین، دیتابیس نمیره مستقیم اجرا کنه؛ اول یه نقشه میکشه که چطور دادهها رو پیدا کنه، فیلتر کنه و برگردونه. این نقشه که بهش Query Plan یا Execution Plan میگن، مثل یه GPSه که به دیتابیس میگه از کدوم مسیر بره تا سریعتر به مقصد برسه.
هدف اصلیش بهینهسازی پرفورمنس با کم کردن زمان اجرا، مصرف CPU، حافظه و I/O (خوندن/نوشتن دیسک). دیتابیس این کار رو با تحلیل ساختار کوئری، آمار جدولها و ایندکسها انجام میده.
📚 Query Planning چطور کار میکنه؟
دیتابیسها (مثل PostgreSQL، MySQL، SQL Server) یه بخش به اسم Query Optimizer دارن که مسئول ساختن پلن بهینهست. بیاین قدمبهقدم ببینیم چی به چیه:
1⃣ پارس کردن کوئری (Parsing)
دیتابیس اول کوئری رو بررسی میکنه تا مطمئن شه درست نوشته شده (از نظر گرامری و معنایی). مثلاً چک میکنه جدول
users
وجود داره یا نه.خروجی این مرحله یه درخت نحوی (parse tree)ه که ساختار کوئری رو نشون میده.
2⃣ بازنویسی کوئری (Rewriting)
تو این مرحله، دیتابیس کوئری رو سادهتر یا بهینهتر میکنه، بدون اینکه نتیجهش تغییر کنه. مثلاً:
تبدیل ساب کوری ها به جوینها.
حذف شرطهای اضافی (مثل
WHERE TRUE
).تو PostgreSQL، این کار توسط Query Rewriter انجام میشه.
3⃣ تولید پلنهای ممکن (Plan Generation)
حالا Query Optimizer کلی پلن ممکن برای اجرای کوئری میسازه. مثلاً برای یه کوئری ساده:
SELECT * FROM users WHERE age > 30;
ممکنه این گزینهها بررسی شه:
Sequential Scan:
کل جدول رو خطبهخط بخونه.
Index Scan:
از ایندکس روی ستون
age
استفاده کنه.Bitmap Scan:
ترکیبی از ایندکس و اسکن.
برای کوئریهای پیچیده (با جوین، گروهبندی و غیره)، تعداد پلنها میتونه به هزارتا برسه
4️⃣ تخمین هزینه (Cost Estimation)
دیتابیس برای هر پلن یه هزینه (cost) تخمین میزنه. این هزینه یه عدد خیالیه که شامل:
مصرف CPU (برای مقایسهها، مرتبسازی و غیره).
I/O (خوندن از دیسک یا کش).
شبکه (اگه دیتابیس توزیعشده باشه).
دیتابیس از آمار جدولها (مثل تعداد ردیفها، توزیع دادهها) و ساختار ایندکسها برای این تخمین استفاده میکنه.
مثلاً تو PostgreSQL، دستور
ANALYZE
این آمار رو بهروز میکنه.5️⃣ انتخاب بهترین پلن
Optimizer پلنی رو انتخاب میکنه که کمترین هزینه رو داره. این پلن میشه Execution Plan و برای اجرا به Executor فرستاده میشه.
تو بعضی دیتابیسها (مثل Oracle)، میتونین از hints استفاده کنین تا Optimizer رو به یه پلن خاص هدایت کنین.
6️⃣ اجرا و بازخورد
بعد از اجرا، دیتابیس ممکنه بازخورد بگیره (مثلاً آمار واقعی تعداد ردیفها) و پلنهای بعدی رو بهتر کنه.
🛠 چرا Query Planning مهمه؟
Query Planning مثل مغز دیتابیسه و مستقیم روی پرفورمنس تأثیر میذاره:
سرعت: یه پلن خوب میتونه یه کوئری رو از چند دقیقه به چند میلیثانیه برسونه.
مصرف منابع: پلن بد میتونه CPU و دیسک رو بیخودی درگیر کنه و سرور رو خفه کنه.
مقیاسپذیری: تو دیتابیسهای بزرگ با میلیونها ردیف، یه پلن بهینه فرق بین موفقیت و فاجعهست.
تجربه کاربر: اگه APIتون به یه دیتابیس کند وصل باشه، کاربراتون فرار میکنن
🔍 مشکلات رایج تو Query Planning
آمار قدیمی: اگه آمار جدولها بهروز نباشه، Optimizer ممکنه پلن بد انتخاب کنه.
کوئریهای پیچیده: جوینهای چندگانه یا شرطهای مبهم میتونن Optimizer رو گیج کنن.
عدم ایندکس: بدون ایندکس، دیتابیس مجبوره کل جدول رو اسکن کنه.
دیتابیسهای توزیعشده:
تو دیتابیسهایی مثل CockroachDB، شبکه هم به معادله اضافه میشه و پلنها پیچیدهتر میشن.
✍ جمعبندی
Query Planning مثل یه شطرنجباز حرفهایه که تو دیتابیس تصمیم میگیره بهترین حرکت چیه. با تحلیل کوئری، آمار جدولها و ایندکسها، یه پلن بهینه میسازه که میتونه سرعت و کارایی پروژهتون رو زیر و رو کنه.
#️⃣ #web #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤11👍2
این داستان Pypy 🐉
PyPy ابزاری قدرتمند برای برنامهنویسهای پایتونه که به دنبال بهبود پرفورمنس کدهای خودشون هستن. اگه با کندی اجرای کد تو پروژههاتون مواجه شدین یا میخواین بدونین چطور میشه سرعت پایتون رو بدون تغییر زیاد تو کد بالا برد، این پست برای شماست. اینجا قراره بررسی کنیم PyPy چیه، چه قابلیتهایی داره، کجا به کار میاد و چه محدودیتهایی داره.
🧠اول از همه PyPy چیه؟
PyPy یه مفسر (interpreter) جایگزین برای پایتونه که به جای CPython (مفسر استاندارد پایتون که با C نوشته شده) استفاده میشه. PyPy خودش با پایتون (به طور دقیقتر، یه زیرمجموعه به اسم RPython) پیادهسازی شده و از Just-In-Time Compilation (JIT) برای کامپایل کردن کد پایتون به کد ماشین تو زمان اجرا استفاده میکنه. این باعث میشه تو خیلی از سناریوها سرعتش به مراتب از CPython بیشتر باشه.
شروع این پروژه به سال ۲۰۰۲ برمیگرده و حالا یه پروژه متنباز با جامعهای فعاله که مدام در حال بهبودشه. هدف PyPy اینه که کدهای پایتون رو سریعتر، بهینهتر و بدون نیاز به تغییر زیاد تو ساختار کد اجرا کنه.
📚 قابلیتهای مهم PyPy
PyPy چندتا ویژگی اصلی داره که اون رو از CPython متمایز میکنه:
1⃣ سرعت بالا با JIT Compilation
PyPy به جای تفسیر خطبهخط کد (مثل CPython)، بخشهای پرتکرار کد رو به کد ماشین کامپایل میکنه. این یعنی برای حلقهها و عملیات تکراری، سرعتش خیلی بیشتره.
مثال: یه تابع ساده برای محاسبه فیبوناچی:
تو CPython این کد برای
2⃣ سازگاری بالا با پایتون
PyPy سعی میکنه تا حد زیادی با استانداردهای CPython سازگار باشه، یعنی اکثر کدهای پایتون بدون تغییر روی PyPy اجرا میشن.
مثلا اگه یه اسکریپت با Python 3.8 روی CPython کار کنه، به احتمال زیاد روی PyPy هم بدون دردسر اجرا میشه مگر از کتابخانه هایی استفاده کرده باشید که C extension استفاده میکنه.
3⃣ مصرف حافظه بهینه
PyPy یه Garbage Collector پیشرفته داره که میتونه مصرف حافظه رو تو بعضی سناریوها بهینهتر از CPython کنه.
کاربردشم تو برنامههایی که مدت طولانی اجرا میشن (مثل وبسرورها) و نیاز به مدیریت خوب حافظه دارن.
4⃣پشتیبانی از Stackless Python
PyPy از قابلیتهای Stackless Python (مثل micro-threads یا taskletها) پشتیبانی میکنه که برای برنامههای concurrent مناسبن.
🔍 چرا PyPy مناسبه؟
PyPy تو موقعیتهایی که پرفورمنس کد حیاتیه، میتونه بازی رو عوض کنه:
سرعت:
تو بنچمارکهای مختلف، PyPy برای کدهای محاسباتی (مثل حلقهها و الگوریتمهای ریاضی) تا ۷ برابر سریعتر از CPython عمل کرده.
بدون نیاز به بازنویسی کد: برخلاف ابزارهایی مثل Cython که نیاز به تغییر کد دارن، PyPy فقط با تغییر مفسر کار میکنه.
متنباز و فعال:
جامعه PyPy مدام داره باگها رو فیکس میکنه و پشتیبانی از نسخههای جدید پایتون رو اضافه میکنه.
🛠 کجا PyPy به کار میاد؟
1⃣ محاسبات سنگین:
اگه پروژهتون پر از حلقههای پیچیده یا الگوریتمهای محاسباتیه (مثل پردازش داده یا شبیهسازی)، PyPy سرعت رو حسابی بالا میبره.
2⃣ وبسرورها:
برای وباپلیکیشنهایی که با فریمورکهایی مثل Flask یا Django کار میکنن، PyPy میتونه پاسخگویی رو بهتر کنه.
3⃣ اسکریپتهای طولانیمدت: برنامههایی که مدت زیادی اجرا میشن (مثل دیمنها یا سرویسها) از بهینهسازی حافظه PyPy سود میبرن.
📚 محدودیتهای PyPy
هرچند PyPy عالیه، ولی محدودیتهایی هم داره:
1⃣ عدم پشتیبانی کامل از C Extensions:
خیلی از کتابخونههای پایتون (مثل NumPy، Pandas یا TensorFlow) از C Extensionها استفاده میکنن که تو PyPy ممکنه کندتر باشن یا کار نکنن. البته PyPy داره روی این موضوع کار میکنه.
2⃣ سربار اولیه JIT:
PyPy تو شروع اجرا یه کم کندتره چون باید کد رو کامپایل کنه. برای اسکریپتهای کوتاه این میتونه نقطهضعف باشه.
3⃣ مصرف حافظه اولیه:
PyPy گاهی تو شروع کار حافظه بیشتری نسبت به CPython مصرف میکنه.
✍ جمعبندی
PyPy یه ابزار قدرتمنده که میتونه کدهای پایتون شما رو بدون نیاز به بازنویسی، سریعتر و بهینهتر اجرا کنه. با استفاده از JIT Compilation، این مفسر برای پروژههای محاسباتی، وباپلیکیشنها و اسکریپتهای طولانیمدت یه انتخاب عالیه. هرچند محدودیتهایی مثل سازگاری با C Extensionها داره، ولی برای خیلی از سناریوها میتونه پرفورمنس رو چند برابر کنه.
➖➖➖➖➖➖➖➖➖➖
PyPy ابزاری قدرتمند برای برنامهنویسهای پایتونه که به دنبال بهبود پرفورمنس کدهای خودشون هستن. اگه با کندی اجرای کد تو پروژههاتون مواجه شدین یا میخواین بدونین چطور میشه سرعت پایتون رو بدون تغییر زیاد تو کد بالا برد، این پست برای شماست. اینجا قراره بررسی کنیم PyPy چیه، چه قابلیتهایی داره، کجا به کار میاد و چه محدودیتهایی داره.
🧠اول از همه PyPy چیه؟
PyPy یه مفسر (interpreter) جایگزین برای پایتونه که به جای CPython (مفسر استاندارد پایتون که با C نوشته شده) استفاده میشه. PyPy خودش با پایتون (به طور دقیقتر، یه زیرمجموعه به اسم RPython) پیادهسازی شده و از Just-In-Time Compilation (JIT) برای کامپایل کردن کد پایتون به کد ماشین تو زمان اجرا استفاده میکنه. این باعث میشه تو خیلی از سناریوها سرعتش به مراتب از CPython بیشتر باشه.
شروع این پروژه به سال ۲۰۰۲ برمیگرده و حالا یه پروژه متنباز با جامعهای فعاله که مدام در حال بهبودشه. هدف PyPy اینه که کدهای پایتون رو سریعتر، بهینهتر و بدون نیاز به تغییر زیاد تو ساختار کد اجرا کنه.
📚 قابلیتهای مهم PyPy
PyPy چندتا ویژگی اصلی داره که اون رو از CPython متمایز میکنه:
1⃣ سرعت بالا با JIT Compilation
PyPy به جای تفسیر خطبهخط کد (مثل CPython)، بخشهای پرتکرار کد رو به کد ماشین کامپایل میکنه. این یعنی برای حلقهها و عملیات تکراری، سرعتش خیلی بیشتره.
مثال: یه تابع ساده برای محاسبه فیبوناچی:
def fib(n):
if n <= 1:
return n
return fib(n-1) + fib(n-2)
print(fib(35))
تو CPython این کد برای
n=35
ممکنه چند ثانیه طول بکشه، ولی تو PyPy به لطف JIT خیلی سریعتره (گاهی تا ۷ برابر).2⃣ سازگاری بالا با پایتون
PyPy سعی میکنه تا حد زیادی با استانداردهای CPython سازگار باشه، یعنی اکثر کدهای پایتون بدون تغییر روی PyPy اجرا میشن.
مثلا اگه یه اسکریپت با Python 3.8 روی CPython کار کنه، به احتمال زیاد روی PyPy هم بدون دردسر اجرا میشه مگر از کتابخانه هایی استفاده کرده باشید که C extension استفاده میکنه.
3⃣ مصرف حافظه بهینه
PyPy یه Garbage Collector پیشرفته داره که میتونه مصرف حافظه رو تو بعضی سناریوها بهینهتر از CPython کنه.
کاربردشم تو برنامههایی که مدت طولانی اجرا میشن (مثل وبسرورها) و نیاز به مدیریت خوب حافظه دارن.
4⃣پشتیبانی از Stackless Python
PyPy از قابلیتهای Stackless Python (مثل micro-threads یا taskletها) پشتیبانی میکنه که برای برنامههای concurrent مناسبن.
🔍 چرا PyPy مناسبه؟
PyPy تو موقعیتهایی که پرفورمنس کد حیاتیه، میتونه بازی رو عوض کنه:
سرعت:
تو بنچمارکهای مختلف، PyPy برای کدهای محاسباتی (مثل حلقهها و الگوریتمهای ریاضی) تا ۷ برابر سریعتر از CPython عمل کرده.
بدون نیاز به بازنویسی کد: برخلاف ابزارهایی مثل Cython که نیاز به تغییر کد دارن، PyPy فقط با تغییر مفسر کار میکنه.
متنباز و فعال:
جامعه PyPy مدام داره باگها رو فیکس میکنه و پشتیبانی از نسخههای جدید پایتون رو اضافه میکنه.
🛠 کجا PyPy به کار میاد؟
1⃣ محاسبات سنگین:
اگه پروژهتون پر از حلقههای پیچیده یا الگوریتمهای محاسباتیه (مثل پردازش داده یا شبیهسازی)، PyPy سرعت رو حسابی بالا میبره.
2⃣ وبسرورها:
برای وباپلیکیشنهایی که با فریمورکهایی مثل Flask یا Django کار میکنن، PyPy میتونه پاسخگویی رو بهتر کنه.
3⃣ اسکریپتهای طولانیمدت: برنامههایی که مدت زیادی اجرا میشن (مثل دیمنها یا سرویسها) از بهینهسازی حافظه PyPy سود میبرن.
📚 محدودیتهای PyPy
هرچند PyPy عالیه، ولی محدودیتهایی هم داره:
1⃣ عدم پشتیبانی کامل از C Extensions:
خیلی از کتابخونههای پایتون (مثل NumPy، Pandas یا TensorFlow) از C Extensionها استفاده میکنن که تو PyPy ممکنه کندتر باشن یا کار نکنن. البته PyPy داره روی این موضوع کار میکنه.
2⃣ سربار اولیه JIT:
PyPy تو شروع اجرا یه کم کندتره چون باید کد رو کامپایل کنه. برای اسکریپتهای کوتاه این میتونه نقطهضعف باشه.
3⃣ مصرف حافظه اولیه:
PyPy گاهی تو شروع کار حافظه بیشتری نسبت به CPython مصرف میکنه.
✍ جمعبندی
PyPy یه ابزار قدرتمنده که میتونه کدهای پایتون شما رو بدون نیاز به بازنویسی، سریعتر و بهینهتر اجرا کنه. با استفاده از JIT Compilation، این مفسر برای پروژههای محاسباتی، وباپلیکیشنها و اسکریپتهای طولانیمدت یه انتخاب عالیه. هرچند محدودیتهایی مثل سازگاری با C Extensionها داره، ولی برای خیلی از سناریوها میتونه پرفورمنس رو چند برابر کنه.
#️⃣ #web #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤10